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Administrative Items

• Graders have been lenient on some items, but will be more strict
• Attach code separately so TAs can run it
• Answer questions clearly and in the order presented
• Show your work (not just answers)

• It is not the TA’s responsibility to debug your code

• There are 3 official office hours



What is Probability?

What does it mean that the probability of heads is ½ ?

Two schools of thought…

Neither is better/worse, but we can compare interpretations…

Frequentist Perspective
Proportion of successes (heads) in repeated 
trials (coin tosses)

Bayesian Perspective
Belief of outcomes based on assumptions 
about nature and the physics of coin flips



Frequentist & Bayesian Modeling

We will use the following notation throughout:

- Unknown (e.g. coin bias) - Data

Frequentist
(Conditional Model)

• is a non-random unknown 
parameter

• is the sampling / data 
generating distribution

Bayesian
(Generative Model)

• is a random variable (latent)
• Requires specifying          the 

prior belief

Prior Belief Likelihood



Bayes’ Rule

Prior Belief
Likelihood

Marginal Likelihood

Posterior distribution is complete representation of uncertainty

Just the definition of 
conditional probability

Contrary to the likelihood principle (likelihood contains all necessary 
information about a parameter)

If we don’t care about     we can just integrate (marginalize) it out,



Bayesian Inference Example

A recent home test states that you have high 
BP.  Should you start medication?

Getty Images
About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.



• Latent quantity of interest is hypertension:
• Measurement of hypertension:
• Prior:
• Likelihood:   

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

Getty Images



Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



Question What is our belief about    before seeing the second test?

Bayesian Updating

What if we receive another test                 ?

Question What is the likelihood that                ? Does it depend on    ?

Posterior over both tests is then:

Proportional to
Inference from first test



Bayesian Updating

Consider two conditionally independent observations     and     , their 
joint distribution is:

So, conditioned on     : Update prior belief after seeing X1

In general, given conditionally independent                    : 

This is proportional to the full posterior by Bayes’ rule:

Normalizer is p(X1,X2)

Probability chain rule



Frequentist vs. Bayesian Inference

We have data                    and want to infer unknown parameter

Frequentist Inference
The data uniquely determines , e.g. by the likelihood:

Bayesian Inference
The data updates our belief about   , which is random:

How well it explains the data

Our belief changes with more data



Minimum Mean Squared Error (MMSE)

Posterior mean minimizes squared error,

• Minimizes error conditioned on observed data

• MMSE is an unbiased estimator

• MMSE is asymptotically unbiased and asymptotically normal,



Example: Beta-Bernoulli MMSE

Let                                           and                        .  

• Beta is a distribution on probabilities 
• Shape parameters     and    with mean,  

Beta PDF

• Beta-Bernoulli has Beta posterior distribution,

MMSE given by posterior mean, Prior belief (pseudo-heads)

Q What happens to MMSE
when we have limited data?

Q What happens to MMSE
when we have a lot of data?



Bayes Estimators

Minimizes expected loss function,

MMSE minimizes squared-error loss

Minimum absolute error (MAE) is posterior median,

Note: Same answer for linear function:

Expected loss referred to as Bayes risk.



Administrative Items

• HW3 Due tonight @ 11:59pm

• HW4 Out tomorrow (Due Thursday, 9/30)
• Only 2 questions this time
• MLE and MAP estimation

• Survey for early student feedback (see Piazza) 
• Please complete by next Monday
• Should only take a couple minutes



Maximum a Posteriori (MAP)

Very common to produce maximum probability estimates,

MAP is the mode ( highest probability outcome ) of the posterior

Mode



Maximum a Posteriori (MAP)

Degenerate loss function

Also, not a Bayes estimator (unless discrete),

MAP (mode) may not be representative of typical outcomes

MAP

Typical

Posterior PDF

Despite its issues, MAP is frequently used 
in “Bayesian” inference and estimation



Example: Beta-Bernoulli MAP

Let                                           and                         then posterior is,  

Beta Posterior PDF

Highest probability (mode) of Beta given by,

NH

Beta distribution is not always convex!
• MAP is any value for
• Two modes (bimodal) for  

Take derivative,
set to zero, solve.



Maximum a Posteriori (MAP)

Equivalent to maximizing joint probability,
Constant

For iid solve in log-domain (like maximum likelihood est.),

Log-Likelihood
(how well it fits data)

Log-Prior
(how well it

agrees with prior)

Intuition MAP is like MLE but with a “penalty” term (log-prior)



Bayes’ Rule : Reminder

likelihood function 
for the parametersprior probability

normalizer, 
often is not of 
interest

posterior probability



Bayes’ Rule : Reminder

likelihood function 
for the parametersprior probability

Posterior is proportional 
to the jointposterior probability



Bayes’ Rule : Reminder

likelihood function 
for the parametersprior probability

In general, distributions are 
different functionsposterior probability



Bayes’ Rule : Reminder

Prior and likelihood chosen for model

In general, distributions are 
different functionsPosterior determined

by algebra



Conjugate Pairs

For some special models the posterior takes a simple form

Prior and posterior are the same
distribution (with different parameters)

We have already seen one example, the Beta-Bernoulli conjugate pair:

Same PDF



Example: Beta-Bernoulli

After a single coinflip of heads (x=1) the posterior is…

The prior (red) is a fair coin,

After observing one head, the posterior 
(blue) concentrates on heads,

What do you expect if we flip N=10 
times with 5 heads and 5 tails?



Example: Beta-Bernoulli
After a N=10 flips (5 heads, 5 tails) we have…

Posterior 
concentrates on fair 

coin      .



Example: Beta-Bernoulli

Bernoulli A.k.a. the coinflip distribution on binary RVs

Beta distribution on                with               has PDF,

For N coinflips                   the posterior is,



Example: Beta-Bernoulli



Other Conjugate Pairs

Likelihood Model Parameters Conjugate Prior
Normal Mean Normal
Normal Mean / Variance Normal-Inv-Gamma

Multivariate Normal Mean / Variance Normal-Inv-Wishart
Multinomial Probability vector Dirichlet

Gamma Rate Gamma
Poisson Rate Gamma

Exponential Rate Gamma

Wikipedia has a nice list of standard conjugate forms…

https://en.wikipedia.org/wiki/Conjugate_prior

https://en.wikipedia.org/wiki/Conjugate_prior


Priors in AI / ML / Data Science

• Priors are often used as regularizers (promote smoothing)
• Reduces overfitting as random noise is not smooth
• Often regularizers can be of simple form, even conjugate

• Priors often house sophisticated domain knowledge
• Possibly from earlier encounters with data
• Possibly problem constraints (e.g.    must be nonnegative)
• World knowledge is complex, so good priors are often complex and 

not conjugate



Choosing a Prior

• Conjugate priors can keep posteriors in closed form
• This can speed up our codes (a lot!)

• The conjugate priors for standard distributions are fairly 
expressive
• Often they can serve the purpose

• They are cool (better than doing nothing or the wrong thing)

• But they require that the likelihood is of a standard form
• This is often a lot to hope for!

• Simply expressed functions may not be able to encode what you 
know
• Constraints, non-local relationships



Prediction

Can make predictions of unobserved    before seeing any data,

This is the prior predictive distribution

Similar calculation to 
marginal likelihood

For continuous parameters sum turns into integral,

This is a prediction based on no observed data



When we observe   we can predict future observations   ,

This is the posterior predictive distribution

Prediction

Again, for continuous parameters sum turns into integral,

This is now the posterior



What is the likelihood of another positive measurement?

Prediction Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



Model Validation

How do we know if the model           is good?

Supervised Learning
Validation set                    consists of known       .  Are true 
values typically preferred under the posterior?

Good (maybe lucky) Not Good (maybe unlucky)

Repeat trials over validation set for more certainty



Model Validation

How do we know if the model           is good?

Unsupervised Learning
Validation set           only contains observable data.  Check 
validation data against posterior-predictive distribution.

Good (maybe lucky) Not Good (maybe unlucky)

Repeat trials over validation set for more certainty



Likelihood and Odds Ratios

Which parameter value      or       is more likely to have 
generated the observed data   ?

The posterior odds ratio is:

Prior Odds
Ratio

Likelihood
Ratio

Observe: the marginal likelihood        cancels!



Posterior Summarization

Ideally we would report the full posterior distribution as the 
result of inference…but this is not always possible

Summary of Posterior Location:
Point estimates: mean (MMSE), mode, median (min. absolute 
error)

Summary of Posterior Uncertainty:
Credible intervals / regions, posterior entropy, variance

Bayesian analysis should report uncertainty when possible



Credible Interval

Def. For parameter                  the                     credible 
interval                   satisfies,

Note: This is not unique -- consider the 95% intervals below:

Interval containing 
fixed percentage of 

posterior 
probability density.

[Source: Gelman et al., “Bayesian Data Analysis”]



Frequentist Inference

Example: Suppose we observe the outcome of N coin flips.               
.  What is the probability of heads   (coin bias)?

• Coin bias    is not random (e.g. there is some true value)
• Uncertainty reported as confidence interval (typically 95%)

Correct Interpretation: On repeated trials of N coin flips    will fall inside 
the confidence interval 95% of the time (in the limit)

• Inferences are valid for multiple trials, never on single trials
Wrong Interpretation: For this trial there is a 95% chance    falls in the 
confidence interval



Posterior distribution is complete representation of uncertainty

• Must specify a prior belief about coin bias
• Coin bias    is a random quantity
• Interval                                                can be reported in lieu of full 

posterior, and takes intuitive interpretation for a single trial
Interval Interpretation: For this experiment there is a 95% chance that     

lies in the interval

Bayesian Inference

Prior Belief
Likelihood

Marginal Likelihood
(more on this later)



Summary

• Bayesian statistics interprets probability differently than classical stats
• Frequentist: Probability  Long run odds in repeated trials
• Bayesian: Probability  Belief of outcome that captures all uncertainty

• Bayesian models treat unknown parameter as random, with a prior

• Bayesian inference via the posterior distribution using Bayes’ rule

• Bayesian estimators minimize expected risk (e.g. MMSE)

• Maximum a posteriori (MAP) estimate maximizes posterior probability



Summary

• Conjugate prior-posterior pairs ensure closed-form posterior inference
• Posterior uncertainty can be characterized by credible intervals

Not necessarily
unique

• Selecting models can be done via posterior odds ratio

• Parameter can be marginalized out via prior/posterior predictive dist’n
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