{ "cells": [ { "cell_type": "code", "execution_count": 9, "id": "df2885cc-ccc6-4c42-9ad5-446f4a009d2c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Standard Mean: 6.111111111111111\n", "Median: 4.0\n", "20% Trimmed Mean: 3.4285714285714284\n" ] } ], "source": [ "import numpy as np\n", "from scipy import stats\n", "\n", "# Example dataset\n", "data = np.array([1, 2, 2, 3, 4, 30, 4, 4, 5])\n", "\n", "# Calculate the standard mean\n", "mean_val = np.mean(data)\n", "print(f\"Standard Mean: {mean_val}\") \n", "\n", "# Calculate the median\n", "median_val = np.median(data)\n", "print(f\"Median: {median_val}\")\n", "\n", "# Calculate the 20% trimmed mean (proportiontocut=0.2)\n", "# This removes the lowest 20% and highest 20% of values\n", "trimmed_mean_val = stats.trim_mean(data, 0.2) \n", "print(f\"20% Trimmed Mean: {trimmed_mean_val}\")\n" ] }, { "cell_type": "code", "execution_count": 19, "id": "2b02d191-10da-4bfa-8db8-c0861059d2cd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 72.76543209876543\n", "STDEV: 8.530265652297437\n", "The minimum value is: 1\n", "The maximum value is: 30\n", "The statistical range is: 29\n" ] } ], "source": [ "# Example dataset\n", "data = np.array([1, 2, 2, 3, 4, 30, 4, 4, 5])\n", "\n", "# Calculate variance & standard deviation\n", "var = np.var(data)\n", "std = np.std(data)\n", "\n", "# Calculate the range\n", "data_range = max(data) - min(data)\n", "\n", "print(f\"Variance: {var}\")\n", "print(f\"STDEV: {std}\")\n", "print(f\"The minimum value is: {min(data)}\")\n", "print(f\"The maximum value is: {max(data)}\")\n", "print(f\"The statistical range is: {data_range}\")" ] }, { "cell_type": "code", "execution_count": 12, "id": "7025867f-8038-4ce0-94e8-cae2df7a5573", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAALAFJREFUeJzt3X901NWd//HXZEIyKMnYgCTBYIwUlRiQJmxogtSzCBF0U2ltxZ+gK+cYxCKgnoIoIdbdLHi09RepFpF1QZutP1rZTaPpdotR2Ab54RrDHi0EA2ViTpI6iUpAZu73D76ZMk2CSUjmk9w8H+fMH3PnfmbeHz6HzCv3fu6NyxhjBAAAYIkopwsAAADoS4QbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAp/XHP/5R3/ve93T++ecrNjZWiYmJysnJ0b333tsvn7d9+3atWbNGn332WYfX1q9fr02bNvXL5/bEpk2b5HK5dPDgwR4fW1ZWpjVr1vR5TQD+inADoEv/+Z//qdzcXLW0tGjdunV666239MQTT2jatGkqLS3tl8/cvn27ioqKBnS4ORNlZWUqKipyugzAatFOFwBg4Fq3bp3S0tL05ptvKjr6rz8ubrjhBq1bt87ByvqOMUZtbW0aPny406UA6COM3ADoUlNTk0aNGhUWbNpFRYX/+HjppZeUk5OjESNGaMSIEZo8ebKef/750OsVFRW69tprlZKSIo/Ho29+85u688471djYGOqzZs0a3X///ZKktLQ0uVwuuVwu/eEPf9AFF1ygDz/8UNu2bQu1X3DBBaFjW1padN999yktLU0xMTE677zztHTpUn3xxRdhdbpcLt199936+c9/rgkTJig2Nlb/+q//qoMHD8rlcmndunX6p3/6J51//vnyeDyaMmWK/uu//qtb/14bN27UZZddJo/Ho4SEBH3ve9/Tvn37Qq/fdttteuaZZ0J1tD96M70FoGuM3ADoUk5OjjZs2KAlS5bo5ptvVmZmpoYNG9ah3+rVq/WTn/xE3//+93XvvffK6/Wqurpan3zySajP/v37lZOTo4ULF8rr9ergwYN6/PHHdfnll+uDDz7QsGHDtHDhQjU3N+upp57Sa6+9puTkZElSenq6Xn/9df3gBz+Q1+vV+vXrJUmxsbGSpC+//FJXXHGFDh8+rAceeECTJk3Shx9+qNWrV+uDDz7Q7373O7lcrlAtv/71r1VZWanVq1crKSlJo0ePDr329NNPKzU1VT/72c8UDAa1bt06zZkzR9u2bVNOTk6X/1bFxcV64IEHdOONN6q4uFhNTU1as2aNcnJytHPnTo0fP14PPfSQvvjiC73yyivasWNH6Nj28wTQRwwAdKGxsdFcfvnlRpKRZIYNG2Zyc3NNcXGxaW1tNcYYc+DAAeN2u83NN9/c7fcNBoPmq6++Mp988omRZH7zm9+EXnv00UeNJFNbW9vhuEsvvdRcccUVHdqLi4tNVFSU2blzZ1j7K6+8YiSZsrKyUJsk4/V6TXNzc1jf2tpaI8mMGTPGHD16NNTe0tJiEhISzMyZM0NtL7zwQliNf/nLX8zw4cPN1VdfHfaedXV1JjY21tx0002htsWLFxt+9AL9i2kpAF0aOXKkKisrtXPnTv3Lv/yLrr32Wn300UdauXKlJk6cqMbGRlVUVCgQCGjx4sWnfa+GhgYVFBRo7Nixio6O1rBhw5SamipJYVM3vfEf//EfysjI0OTJk3XixInQ46qrrgpNa51qxowZ+sY3vtHpe33/+9+Xx+MJPY+Li1N+fr7efvttBQKBTo/ZsWOHjh49qttuuy2sfezYsZoxY0a3p7UA9A2mpQB8rSlTpmjKlCmSpK+++ko//vGP9dOf/lTr1q2T1+uVJKWkpHR5fDAYVF5eno4cOaKHHnpIEydO1Nlnn61gMKhvf/vbOnr06BnV9+mnn+pPf/pTp1NmksLu65FOPw2UlJTUadvx48f1+eefh873VE1NTV2+75gxY1RRUXHa+gH0LcINgB4ZNmyYCgsL9dOf/lTV1dWaO3euJOnw4cMaO3Zsp8dUV1fr/fff16ZNm7RgwYJQ+5/+9Kc+qWnUqFEaPny4Nm7c2OXrpzr1/pu/VV9f32lbTEyMRowY0ekxI0eOlCT5fL4Orx05cqTD5wPoX0xLAehSZ1/W0l+nkcaMGaO8vDy53W6VlJR0+T7tYaL9BuB2zz77bIe+7X06G82JjY3ttP0f/uEftH//fo0cOTI0ynTq49RVVV/ntddeU1tbW+h5a2urtm7dqunTp8vtdnd6TE5OjoYPH67NmzeHtR8+fFi///3vdeWVV3br/AD0DUZuAHTpqquuUkpKivLz83XJJZcoGAxq7969euyxxzRixAjdc889uuCCC/TAAw/oJz/5iY4ePaobb7xRXq9XNTU1amxsVFFRkS655BKNGzdOK1askDFGCQkJ2rp1a6fTNRMnTpQkPfHEE1qwYIGGDRumiy++WHFxcZo4caJ++ctfqrS0VBdeeKE8Ho8mTpyopUuX6tVXX9V3vvMdLVu2TJMmTVIwGFRdXZ3eeust3XvvvZo6dWq3ztntdmvWrFlavny5gsGg1q5dq5aWltNuvHfOOefooYce0gMPPKD58+frxhtvVFNTk4qKiuTxeFRYWNjh/NauXas5c+bI7XZr0qRJiomJ6cmlAXA6Tt/RDGDgKi0tNTfddJMZP368GTFihBk2bJg5//zzza233mpqamrC+r744ovm7/7u74zH4zEjRoww3/rWt8wLL7wQer2mpsbMmjXLxMXFmW984xvmhz/8oamrqzOSTGFhYdh7rVy50owZM8ZERUUZSea///u/jTHGHDx40OTl5Zm4uDgjyaSmpoaO+fzzz82DDz5oLr74YhMTE2O8Xq+ZOHGiWbZsmamvrw/1k2QWL17c4VzbV0utXbvWFBUVmZSUFBMTE2O+9a1vmTfffDOs79+ulmq3YcMGM2nSpNDnX3vttebDDz8M63Ps2DGzcOFCc+655xqXy9XlyjAAvecyxhgHsxUADAgHDx5UWlqaHn30Ud13331OlwPgDHDPDQAAsArhBgAAWIVpKQAAYBVGbgAAgFUINwAAwCqEGwAAYJUht4lfMBjUkSNHFBcXd9ot2AEAwMBhjFFra6vGjBmjqKjTj80MuXBz5MiRLv/+DQAAGNgOHTp02j/UKw3BcBMXFyfp5D9OfHy8w9UAAIDuaGlp0dixY0Pf46cz5MJN+1RUfHw84QYAgEGmO7eUcEMxAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALDKkNuh2AaBoFFVbbMaWts0Os6j7LQEuaP4I6AAAEiEm0GnvNqnoq018vnbQm3JXo8K89M1OyPZwcoAABgYmJYaRMqrfVq0eXdYsJGken+bFm3erfJqn0OVAQAwcBBuBolA0Khoa41MJ6+1txVtrVEg2FkPAACGDsLNIFFV29xhxOZURpLP36aq2ubIFQUAwABEuBkkGlq7Dja96QcAgK0IN4PE6DhPn/YDAMBWhJtBIjstQclej7pa8O3SyVVT2WkJkSwLAIABh3AzSLijXCrMT5ekDgGn/Xlhfjr73QAAhjzCzSAyOyNZJbdkKskbPvWU5PWo5JZM9rkBAEBs4jfozM5I1qz0JHYoBgCgC4SbQcgd5VLOuJFOlwEAwIDEtBQAALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWCXa6QIAYKAKBI2qapvV0Nqm0XEeZaclyB3lcrosAF+DcAMAnSiv9qloa418/rZQW7LXo8L8dM3OSHawMgBfh2kpAPgb5dU+Ldq8OyzYSFK9v02LNu9WebXPocoAdAfhBgBOEQgaFW2tkenktfa2oq01CgQ76wFgIHA83Kxfv15paWnyeDzKyspSZWXlaftv2bJFl112mc466ywlJyfr9ttvV1NTU4SqBWC7qtrmDiM2pzKSfP42VdU2R64oAD3iaLgpLS3V0qVLtWrVKu3Zs0fTp0/XnDlzVFdX12n/d955R/Pnz9cdd9yhDz/8UL/61a+0c+dOLVy4MMKVA7BVQ2vXwaY3/QBEnqPh5vHHH9cdd9yhhQsXasKECfrZz36msWPHqqSkpNP+//M//6MLLrhAS5YsUVpami6//HLdeeedeu+99yJcOQBbjY7z9Gk/AJHnWLg5fvy4du3apby8vLD2vLw8bd++vdNjcnNzdfjwYZWVlckYo08//VSvvPKKrrnmmi4/59ixY2ppaQl7AEBXstMSlOz1qKsF3y6dXDWVnZYQybIA9IBj4aaxsVGBQECJiYlh7YmJiaqvr+/0mNzcXG3ZskXz5s1TTEyMkpKSdM455+ipp57q8nOKi4vl9XpDj7Fjx/bpeQCwizvKpcL8dEnqEHDanxfmp7PfDTCAOX5DscsV/gPCGNOhrV1NTY2WLFmi1atXa9euXSovL1dtba0KCgq6fP+VK1fK7/eHHocOHerT+gHYZ3ZGskpuyVSSN3zqKcnrUcktmexzAwxwjm3iN2rUKLnd7g6jNA0NDR1Gc9oVFxdr2rRpuv/++yVJkyZN0tlnn63p06frkUceUXJyxx84sbGxio2N7fsTAGC12RnJmpWexA7FwCDk2MhNTEyMsrKyVFFREdZeUVGh3NzcTo/58ssvFRUVXrLb7ZZ0csQHAPqSO8qlnHEjde3k85QzbiTBBhgkHJ2WWr58uTZs2KCNGzdq3759WrZsmerq6kLTTCtXrtT8+fND/fPz8/Xaa6+ppKREBw4c0LvvvqslS5YoOztbY8aMceo0AADAAOLo35aaN2+empqa9PDDD8vn8ykjI0NlZWVKTU2VJPl8vrA9b2677Ta1trbq6aef1r333qtzzjlHM2bM0Nq1a506BQAAMMC4zBCbz2lpaZHX65Xf71d8fLzT5QAAgG7oyfe346ulAAAA+hLhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAVol2ugAAcFogaFRV26yG1jaNjvMoOy1B7iiX02UB6CXCDYAhrbzap6KtNfL520JtyV6PCvPTNTsj2cHKAPQW01IAhqzyap8Wbd4dFmwkqd7fpkWbd6u82udQZQDOBOEGwJAUCBoVba2R6eS19rairTUKBDvrAWAgI9wAGJKqaps7jNicykjy+dtUVdscuaIA9AnCDYAhqaG162DTm34ABg5uKO5HrMAABq7RcZ4+7Qdg4CDc9BNWYAADW3ZagpK9HtX72zq978YlKcl78pcSAIML01L9gBUYwMDnjnKpMD9d0skgc6r254X56Yy2AoMQ4aaPsQIDGDxmZySr5JZMJXnDp56SvB6V3JLJKCswSDEt1cd6sgIjZ9zIyBUGoFOzM5I1Kz2J++MAixBu+hgrMIDBxx3l4pcNwCJMS/UxVmAAAOAswk0fa1+B0dWAtksnV02xAgMAgP5BuOljrMAAAMBZhJt+wAoMAACcww3F/YQVGAAAOINw049YgQEAQOQxLQUAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYxfFws379eqWlpcnj8SgrK0uVlZWn7X/s2DGtWrVKqampio2N1bhx47Rx48YIVQsAAAa6aCc/vLS0VEuXLtX69es1bdo0Pfvss5ozZ45qamp0/vnnd3rM9ddfr08//VTPP/+8vvnNb6qhoUEnTpyIcOUAAGCgchljjFMfPnXqVGVmZqqkpCTUNmHCBM2dO1fFxcUd+peXl+uGG27QgQMHlJCQ0KvPbGlpkdfrld/vV3x8fK9rBwAAkdOT72/HpqWOHz+uXbt2KS8vL6w9Ly9P27dv7/SYN954Q1OmTNG6det03nnn6aKLLtJ9992no0ePdvk5x44dU0tLS9gDAADYy7FpqcbGRgUCASUmJoa1JyYmqr6+vtNjDhw4oHfeeUcej0evv/66Ghsbddddd6m5ubnL+26Ki4tVVFTU5/UDAICByfEbil0uV9hzY0yHtnbBYFAul0tbtmxRdna2rr76aj3++OPatGlTl6M3K1eulN/vDz0OHTrU5+cAAAAGDsdGbkaNGiW3291hlKahoaHDaE675ORknXfeefJ6vaG2CRMmyBijw4cPa/z48R2OiY2NVWxsbN8WDwAABizHRm5iYmKUlZWlioqKsPaKigrl5uZ2esy0adN05MgRff7556G2jz76SFFRUUpJSenXegEAwODg6LTU8uXLtWHDBm3cuFH79u3TsmXLVFdXp4KCAkknp5Tmz58f6n/TTTdp5MiRuv3221VTU6O3335b999/v/7xH/9Rw4cPd+o0AADAAOLoPjfz5s1TU1OTHn74Yfl8PmVkZKisrEypqamSJJ/Pp7q6ulD/ESNGqKKiQj/60Y80ZcoUjRw5Utdff70eeeQRp04BAAAMMI7uc+ME9rkBAGDwGRT73AAAAPQHwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFaJdroAAED/CASNqmqb1dDaptFxHmWnJcgd5XK6LKDfEW4AwELl1T4Vba2Rz98Wakv2elSYn67ZGckOVgb0P6alAMAy5dU+Ldq8OyzYSFK9v02LNu9WebXPocqAyCDcAIBFAkGjoq01Mp281t5WtLVGgWBnPQA7EG4AwCJVtc0dRmxOZST5/G2qqm2OXFFAhHU73Bw+fLg/6wAA9IGG1q6DTW/6AYNRt8NNRkaG/u3f/q0/awEAnKHRcZ4+7QcMRt0ON//8z/+sxYsX67rrrlNTU1N/1gQA6KXstAQlez3qasG3SydXTWWnJUSyLCCiuh1u7rrrLr3//vv6y1/+oksvvVRvvPFGf9YFAOgFd5RLhfnpktQh4LQ/L8xPZ78bWM1ljOnxLfNPP/20li1bpgkTJig6OnyrnN27d/dZcf2hpaVFXq9Xfr9f8fHxTpcDAP2CfW5gm558f/d4E79PPvlEr776qhISEnTttdd2CDcAAOfNzkjWrPQkdijGkNSjZPKLX/xC9957r2bOnKnq6mqde+65/VUXAOAMuaNcyhk30ukygIjrdriZPXu2qqqq9PTTT2v+/Pn9WRMAAECvdTvcBAIB/e///q9SUlL6sx4AAIAz0u1wU1FR0Z91AAAA9An+/AIAALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYxfFws379eqWlpcnj8SgrK0uVlZXdOu7dd99VdHS0Jk+e3L8FAgCAQcXRcFNaWqqlS5dq1apV2rNnj6ZPn645c+aorq7utMf5/X7Nnz9fV155ZYQqBQAAg4XLGGOc+vCpU6cqMzNTJSUlobYJEyZo7ty5Ki4u7vK4G264QePHj5fb7davf/1r7d27t9uf2dLSIq/XK7/fr/j4+DMpHwAAREhPvr8dG7k5fvy4du3apby8vLD2vLw8bd++vcvjXnjhBe3fv1+FhYXd+pxjx46ppaUl7AEAAOzlWLhpbGxUIBBQYmJiWHtiYqLq6+s7Pebjjz/WihUrtGXLFkVHR3frc4qLi+X1ekOPsWPHnnHtAABg4HL8hmKXyxX23BjToU2SAoGAbrrpJhUVFemiiy7q9vuvXLlSfr8/9Dh06NAZ1wwAAAau7g1/9INRo0bJ7XZ3GKVpaGjoMJojSa2trXrvvfe0Z88e3X333ZKkYDAoY4yio6P11ltvacaMGR2Oi42NVWxsbP+cBAAAGHAcG7mJiYlRVlaWKioqwtorKiqUm5vboX98fLw++OAD7d27N/QoKCjQxRdfrL1792rq1KmRKh0AAAxgjo3cSNLy5ct16623asqUKcrJydFzzz2nuro6FRQUSDo5pfTnP/9ZL774oqKiopSRkRF2/OjRo+XxeDq0AwCAocvRcDNv3jw1NTXp4Ycfls/nU0ZGhsrKypSamipJ8vl8X7vnDQAAwKkc3efGCexzAwDA4DMo9rkBAADoD4QbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYJVopwuwRSBoVFXbrIbWNo2O8yg7LUHuKJfTZQEAMOQQbvpAebVPRVtr5PO3hdqSvR4V5qdrdkayg5UBADD0MC11hsqrfVq0eXdYsJGken+bFm3erfJqn0OVAQAwNBFuzkAgaFS0tUamk9fa24q21igQ7KxH/wkEjXbsb9Jv9v5ZO/Y3RfzzAQBwEtNSZ6CqtrnDiM2pjCSfv01Vtc3KGTcyIjUxRQYAGOoYuTkDDa1dB5ve9DtTTJEBAEC4OSOj4zx92u9MDNQpMgAAIo1wcway0xKU7PWoqwXfLp2cEspOS+j3WnoyRQYAgM0IN2fAHeVSYX66JHUIOO3PC/PTI7LfzUCbIgMAwCmEmzM0OyNZJbdkKskbPvWU5PWo5JbMiN3EO5CmyAAAcBKrpfrA7IxkzUpPcnSH4vYpsnp/W6f33bh0MnBFYooMAAAnEW76iDvKFbHl3l19fmF+uhZt3i2XFBZwIj1FBgCAk5iWsshAmSIDAMBJjNxYZiBMkQEA4CTCjYWcniIDAMBJTEsBAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYJdrpAgAAgB0CQaOq2mY1tLZpdJxH2WkJcke5Il4H4QYAAJyx8mqfirbWyOdvC7Ulez0qzE/X7IzkiNbCtBQAADgj5dU+Ldq8OyzYSFK9v02LNu9WebUvovUQbgAAQK8FgkZFW2tkOnmtva1oa40Cwc569A/CDQAA6LWq2uYOIzanMpJ8/jZV1TZHrCbCDQAA6LWG1q6DTW/69QXHw8369euVlpYmj8ejrKwsVVZWdtn3tdde06xZs3TuuecqPj5eOTk5evPNNyNYLQAAONXoOE+f9usLjoab0tJSLV26VKtWrdKePXs0ffp0zZkzR3V1dZ32f/vttzVr1iyVlZVp165d+vu//3vl5+drz549Ea4cAABIUnZagpK9HnW14Nulk6umstMSIlaTyxgTuTt8/sbUqVOVmZmpkpKSUNuECRM0d+5cFRcXd+s9Lr30Us2bN0+rV6/uVv+WlhZ5vV75/X7Fx8f3qm4AAPBX7aulJIXdWNweeEpuyTzj5eA9+f52bOTm+PHj2rVrl/Ly8sLa8/LytH379m69RzAYVGtrqxISIpcGAQBAuNkZySq5JVNJ3vCppySvp0+CTU85tolfY2OjAoGAEhMTw9oTExNVX1/frfd47LHH9MUXX+j666/vss+xY8d07Nix0POWlpbeFQwAALo0OyNZs9KT2KFYklyu8JM2xnRo68zLL7+sNWvW6De/+Y1Gjx7dZb/i4mIVFRWdcZ0AAOD03FEu5Ywb6XQZzk1LjRo1Sm63u8MoTUNDQ4fRnL9VWlqqO+64Q//+7/+umTNnnrbvypUr5ff7Q49Dhw6dce0AAGDgcizcxMTEKCsrSxUVFWHtFRUVys3N7fK4l19+WbfddpteeuklXXPNNV/7ObGxsYqPjw97AAAAezk6LbV8+XLdeuutmjJlinJycvTcc8+prq5OBQUFkk6Ouvz5z3/Wiy++KOlksJk/f76eeOIJffvb3w6N+gwfPlxer9ex8wAAAAOHo+Fm3rx5ampq0sMPPyyfz6eMjAyVlZUpNTVVkuTz+cL2vHn22Wd14sQJLV68WIsXLw61L1iwQJs2bYp0+QAAYABydJ8bJ7DPDQAAg8+g2OcGAACgPxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFaJdroAAACcEAgaVdU2q6G1TaPjPMpOS5A7yuV0WegDhBsAwJBTXu1T0dYa+fxtobZkr0eF+emanZHsYGXoC0xLAQCGlPJqnxZt3h0WbCSp3t+mRZt3q7za51Bl6CuEGwDAkBEIGhVtrZHp5LX2tqKtNQoEO+uBwYJwAwAYMqpqmzuM2JzKSPL521RV2xy5otDnCDcAgCGjobXrYNObfhiYCDcAgCFjdJynT/thYCLcAACGjOy0BCV7PepqwbdLJ1dNZaclRLIs9DHCDQBgyHBHuVSYny5JHQJO+/PC/HT2uxnkCDcAgCFldkaySm7JVJI3fOopyetRyS2Z7HNjATbxAwAMObMzkjUrPYkdii1FuAEADEnuKJdyxo10ugz0A6alAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYJdrpAgCgLwWCRlW1zWpobdPoOI+y0xLkjnI5XRaACCLcALBGebVPRVtr5PO3hdqSvR4V5qdrdkayg5UBiCSmpQBYobzap0Wbd4cFG0mq97dp0ebdKq/2OVQZgEgj3AAY9AJBo6KtNTKdvNbeVrS1RoFgZz0A2IZwA2DQq6pt7jBicyojyedvU1Vtc+SKAuAYx8PN+vXrlZaWJo/Ho6ysLFVWVp62/7Zt25SVlSWPx6MLL7xQP//5zyNUKYCBqqG162DTm34ABjdHw01paamWLl2qVatWac+ePZo+fbrmzJmjurq6TvvX1tbq6quv1vTp07Vnzx498MADWrJkiV599dUIVw5gIBkd5+nTfgAGN5cxxrFJ6KlTpyozM1MlJSWhtgkTJmju3LkqLi7u0P/HP/6x3njjDe3bty/UVlBQoPfff187duzo1me2tLTI6/XK7/crPj7+zE8CgOMCQaPL1/5e9f62Tu+7cUlK8nr0zo9nsCwcGKR68v3t2MjN8ePHtWvXLuXl5YW15+Xlafv27Z0es2PHjg79r7rqKr333nv66quvOj3m2LFjamlpCXsAsIs7yqXC/HRJJ4PMqdqfF+anE2yAIcKxcNPY2KhAIKDExMSw9sTERNXX13d6TH19faf9T5w4ocbGxk6PKS4ultfrDT3Gjh3bNycAYECZnZGsklsyleQNn3pK8npUcksm+9wAQ4jjm/i5XOG/SRljOrR9Xf/O2tutXLlSy5cvDz1vaWkh4ACWmp2RrFnpSexQDAxxjoWbUaNGye12dxilaWho6DA60y4pKanT/tHR0Ro5cmSnx8TGxio2NrZvigYw4LmjXMoZ1/nPAwBDg2PTUjExMcrKylJFRUVYe0VFhXJzczs9Jicnp0P/t956S1OmTNGwYcP6rVYAADB4OLoUfPny5dqwYYM2btyoffv2admyZaqrq1NBQYGkk1NK8+fPD/UvKCjQJ598ouXLl2vfvn3auHGjnn/+ed13331OnQIAABhgHL3nZt68eWpqatLDDz8sn8+njIwMlZWVKTU1VZLk8/nC9rxJS0tTWVmZli1bpmeeeUZjxozRk08+qeuuu86pUwAAAAOMo/vcOIF9bgAAGHwGxT43AAAA/YFwAwAArEK4AQAAViHcAAAAqxBuAACAVRz/8wuR1r44jD+gCQDA4NH+vd2dRd5DLty0trZKEn9fCgCAQai1tVVer/e0fYbcPjfBYFBHjhxRXFzcaf9AJ/pX+x8wPXToEPsNDQBcj4GDazGwcD0GDmOMWltbNWbMGEVFnf6umiE3chMVFaWUlBSny8D/Fx8fzw+MAYTrMXBwLQYWrsfA8HUjNu24oRgAAFiFcAMAAKxCuIEjYmNjVVhYqNjYWKdLgbgeAwnXYmDhegxOQ+6GYgAAYDdGbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBv1m/fr1SktLk8fjUVZWliorK7vs+9prr2nWrFk699xzFR8fr5ycHL355psRrNZuPbkWp3r33XcVHR2tyZMn92+BQ0xPr8exY8e0atUqpaamKjY2VuPGjdPGjRsjVK39eno9tmzZossuu0xnnXWWkpOTdfvtt6upqSlC1aJbDNAPfvnLX5phw4aZX/ziF6ampsbcc8895uyzzzaffPJJp/3vueces3btWlNVVWU++ugjs3LlSjNs2DCze/fuCFdun55ei3afffaZufDCC01eXp657LLLIlPsENCb6/Hd737XTJ061VRUVJja2lrzxz/+0bz77rsRrNpePb0elZWVJioqyjzxxBPmwIEDprKy0lx66aVm7ty5Ea4cp0O4Qb/Izs42BQUFYW2XXHKJWbFiRbffIz093RQVFfV1aUNOb6/FvHnzzIMPPmgKCwsJN32op9fjt7/9rfF6vaapqSkS5Q05Pb0ejz76qLnwwgvD2p588kmTkpLSbzWi55iWQp87fvy4du3apby8vLD2vLw8bd++vVvvEQwG1draqoSEhP4occjo7bV44YUXtH//fhUWFvZ3iUNKb67HG2+8oSlTpmjdunU677zzdNFFF+m+++7T0aNHI1Gy1XpzPXJzc3X48GGVlZXJGKNPP/1Ur7zyiq655ppIlIxuGnJ/OBP9r7GxUYFAQImJiWHtiYmJqq+v79Z7PPbYY/riiy90/fXX90eJQ0ZvrsXHH3+sFStWqLKyUtHR/IjoS725HgcOHNA777wjj8ej119/XY2NjbrrrrvU3NzMfTdnqDfXIzc3V1u2bNG8efPU1tamEydO6Lvf/a6eeuqpSJSMbmLkBv3G5XKFPTfGdGjrzMsvv6w1a9aotLRUo0eP7q/yhpTuXotAIKCbbrpJRUVFuuiiiyJV3pDTk/8bwWBQLpdLW7ZsUXZ2tq6++mo9/vjj2rRpE6M3faQn16OmpkZLlizR6tWrtWvXLpWXl6u2tlYFBQWRKBXdxK9l6HOjRo2S2+3u8JtPQ0NDh9+Q/lZpaanuuOMO/epXv9LMmTP7s8whoafXorW1Ve+995727Nmju+++W9LJL1djjKKjo/XWW29pxowZEandRr35v5GcnKzzzjtPXq831DZhwgQZY3T48GGNHz++X2u2WW+uR3FxsaZNm6b7779fkjRp0iSdffbZmj59uh555BElJyf3e934eozcoM/FxMQoKytLFRUVYe0VFRXKzc3t8riXX35Zt912m1566SXmr/tIT69FfHy8PvjgA+3duzf0KCgo0MUXX6y9e/dq6tSpkSrdSr35vzFt2jQdOXJEn3/+eajto48+UlRUlFJSUvq1Xtv15np8+eWXiooK/+p0u92STo74YIBw7l5m2Kx9eeXzzz9vampqzNKlS83ZZ59tDh48aIwxZsWKFebWW28N9X/ppZdMdHS0eeaZZ4zP5ws9PvvsM6dOwRo9vRZ/i9VSfaun16O1tdWkpKSYH/zgB+bDDz8027ZtM+PHjzcLFy506hSs0tPr8cILL5jo6Gizfv16s3//fvPOO++YKVOmmOzsbKdOAZ0g3KDfPPPMMyY1NdXExMSYzMxMs23bttBrCxYsMFdccUXo+RVXXGEkdXgsWLAg8oVbqCfX4m8RbvpeT6/Hvn37zMyZM83w4cNNSkqKWb58ufnyyy8jXLW9eno9nnzySZOenm6GDx9ukpOTzc0332wOHz4c4apxOi5jGEcDAAD24J4bAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAg1ogEFBubq6uu+66sHa/36+xY8fqwQcfdKgyAE5hh2IAg97HH3+syZMn67nnntPNN98sSZo/f77ef/997dy5UzExMQ5XCCCSCDcArPDkk09qzZo1qq6u1s6dO/XDH/5QVVVVmjx5stOlAYgwwg0AKxhjNGPGDLndbn3wwQf60Y9+xJQUMEQRbgBY4//+7/80YcIETZw4Ubt371Z0dLTTJQFwADcUA7DGxo0bddZZZ6m2tlaHDx92uhwADmHkBoAVduzYoe985zv67W9/q3Xr1ikQCOh3v/udXC6X06UBiDBGbgAMekePHtWCBQt05513aubMmdqwYYN27typZ5991unSADiAcANg0FuxYoWCwaDWrl0rSTr//PP12GOP6f7779fBgwedLQ5AxDEtBWBQ27Ztm6688kr94Q9/0OWXXx722lVXXaUTJ04wPQUMMYQbAABgFaalAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALDK/wMzBA5nhjokKwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "# generate random X / Y coordinates\n", "x = np.random.rand(10)\n", "y = np.random.rand(10)\n", "\n", "# scatterplot\n", "plt.scatter(x, y)\n", "plt.xlabel(\"X\")\n", "plt.ylabel(\"Y\")\n", "plt.title(\"Scatterplot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 14, "id": "fa354be1-d3f4-4f23-851a-40dc0ecbe64a", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJRlJREFUeJzt3X1UlHX+//HXCDiiAabmIIVAhYpZaWpu5Cpq0o1aalmt3dhuloVaZKtJZKIlJBZRapLdkLut1Z5Tbp7TnWRK7UFX1NI0s61AUSPcVKA0ULh+f3SYb/MDFQbwmg88H+fMOc011wxvr+PKcz/XzDUOy7IsAQAAGKqN3QMAAAA0BjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxA6BOr732mhwOhzZv3lzn46NHj1ZkZKT7fmRkpO66664G/Yy8vDylpKToyJEj3g8KoNXzt3sAAC3DqlWrFBwc3KDn5OXlad68ebrrrrvUsWPH5hkMQItHzABoEv369bN7hAY7fvy4HA6H/P35pxAwGaeZADSJ//80U3V1tZ588kn17NlTgYGB6tixoy655BI999xzkqSUlBTNnDlTkhQVFSWHwyGHw6H169e7n5+enq5evXrJ6XSqa9euuvPOO7Vv3z6Pn2tZllJTUxUREaF27dppwIABysnJUVxcnOLi4tz7rV+/Xg6HQ3//+9/18MMP69xzz5XT6dS3336rgwcPKiEhQb1799ZZZ52lrl27avjw4frss888flZhYaEcDocWLVqkhQsXKjIyUoGBgYqLi9M333yj48ePa/bs2QoLC1NISIjGjRunkpKSpj/YADzwf0cAnFJVVZVOnDhRa7tlWad8Xnp6ulJSUvTYY49pyJAhOn78uL7++mv3+2MmT56sQ4cOafHixXrnnXfUrVs3SVLv3r0lSffff7+WL1+uadOmafTo0SosLNScOXO0fv16bd26VV26dJEkJScnKy0tTffee6/Gjx+voqIiTZ48WcePH1ePHj1qzZWUlKQrrrhCWVlZatOmjbp27aqDBw9KkubOnavQ0FD9/PPPWrVqleLi4rR27VqPKJKkpUuX6pJLLtHSpUt15MgRPfzwwxozZowGDRqkgIAAvfrqq9qzZ4/++te/avLkyVq9enWDjjmABrIAoA7Z2dmWpFPeIiIi3PtHRERYkyZNct8fPXq01bdv31P+jEWLFlmSrIKCAo/tu3btsiRZCQkJHtv/85//WJKsRx991LIsyzp06JDldDqtW265xWO/DRs2WJKsoUOHuretW7fOkmQNGTLktH/2EydOWMePH7dGjBhhjRs3zr29oKDAkmRdeumlVlVVlXt7ZmamJcm6/vrrPV4nMTHRkmSVlpae9mcC8B6nmQCc0t/+9jfl5+fXug0ePPiUz7v88su1bds2JSQk6KOPPlJZWVm9f+a6deskqdanoy6//HLFxMRo7dq1kqSNGzeqoqJCN998s8d+f/jDHzw+afV7N954Y53bs7KydNlll6ldu3by9/dXQECA1q5dq127dtXa97rrrlObNv/3z2dMTIwkadSoUR771Wzfu3fvSf6kAJoCp5kAnFJMTIwGDBhQa3tISIiKiopO+rykpCR16NBBr7/+urKysuTn56chQ4Zo4cKFdb7e7/3000+S5D719HthYWHas2ePx34ul6vWfnVtO9lrZmRk6OGHH9Z9992nJ554Ql26dJGfn5/mzJlTZ8x06tTJ437btm1Puf3XX3+tcxYATYOVGQDNwt/fXzNmzNDWrVt16NAhvfHGGyoqKtLVV1+to0ePnvK5nTt3liT98MMPtR47cOCA+/0yNfv9+OOPtfYrLi6u87UdDketba+//rri4uK0bNkyjRo1SoMGDdKAAQNUXl5+6j8kAJ9AzABodh07dtRNN92kqVOn6tChQyosLJQkOZ1OSdKxY8c89h8+fLik3yLj9/Lz87Vr1y6NGDFCkjRo0CA5nU699dZbHvtt3LjRvXpTHw6Hwz1Lje3bt2vDhg31fg0A9uE0E4BmMWbMGPXp00cDBgzQOeecoz179igzM1MRERGKjo6WJF188cWSpOeee06TJk1SQECAevbsqZ49e+ree+/V4sWL1aZNG1177bXuTzOFh4froYcekvTbaZ0ZM2YoLS1NZ599tsaNG6d9+/Zp3rx56tatm8f7Wk5l9OjReuKJJzR37lwNHTpUu3fv1vz58xUVFVXnJ7kA+BZiBkCzGDZsmN5++229/PLLKisrU2hoqEaOHKk5c+YoICBAkhQXF6ekpCStWLFCL730kqqrq7Vu3Tr3KZ8LLrhAr7zyipYuXaqQkBBdc801SktLc59ekqQFCxaoQ4cOysrKUnZ2tnr16qVly5YpOTm53lcVTk5O1tGjR/XKK68oPT1dvXv3VlZWllatWuW+7g0A3+WwrNNcLAIADFNQUKBevXpp7ty5evTRR+0eB0AzI2YAGG3btm164403FBsbq+DgYO3evVvp6ekqKyvTjh07TvqpJgAtB6eZABitQ4cO2rx5s1555RUdOXJEISEhiouL04IFCwgZoJVgZQYAABiNj2YDAACjETMAAMBoxAwAADBai38DcHV1tQ4cOKCgoKA6L2MOAAB8j2VZKi8vV1hY2GkvgNniY+bAgQMKDw+3ewwAAOCFoqIinXfeeafcp8XHTFBQkKTfDkZwcLDN0wAAgPooKytTeHi4+/f4qbT4mKk5tRQcHEzMAABgmPq8RYQ3AAMAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMJq/3QMAAOovcvZ7Xj+38KlRTTgJ4DtYmQEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNFsjZkTJ07oscceU1RUlAIDA3X++edr/vz5qq6udu9jWZZSUlIUFhamwMBAxcXFaefOnTZODQAAfImtMbNw4UJlZWVpyZIl2rVrl9LT07Vo0SItXrzYvU96eroyMjK0ZMkS5efnKzQ0VCNHjlR5ebmNkwMAAF9ha8xs2LBBN9xwg0aNGqXIyEjddNNNio+P1+bNmyX9tiqTmZmp5ORkjR8/Xn369NGKFSt09OhRrVy50s7RAQCAj7A1ZgYPHqy1a9fqm2++kSRt27ZN//73v3XddddJkgoKClRcXKz4+Hj3c5xOp4YOHaq8vLw6X7OiokJlZWUeNwAA0HL52/nDH3nkEZWWlqpXr17y8/NTVVWVFixYoD/96U+SpOLiYkmSy+XyeJ7L5dKePXvqfM20tDTNmzeveQcHAAA+w9aVmbfeekuvv/66Vq5cqa1bt2rFihV6+umntWLFCo/9HA6Hx33Lsmptq5GUlKTS0lL3raioqNnmBwAA9rN1ZWbmzJmaPXu2br31VknSxRdfrD179igtLU2TJk1SaGiopN9WaLp16+Z+XklJSa3VmhpOp1NOp7P5hwcAAD7B1pWZo0ePqk0bzxH8/PzcH82OiopSaGiocnJy3I9XVlYqNzdXsbGxZ3RWAADgm2xdmRkzZowWLFig7t2766KLLtLnn3+ujIwM/eUvf5H02+mlxMREpaamKjo6WtHR0UpNTVX79u01ceJEO0cH0MpFzn7P6+cWPjWqCScBYGvMLF68WHPmzFFCQoJKSkoUFhamKVOm6PHHH3fvM2vWLB07dkwJCQk6fPiwBg0apDVr1igoKMjGyQEAgK9wWJZl2T1EcyorK1NISIhKS0sVHBxs9zgAWgi7VmZYEUJr0ZDf33w3EwAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACj+ds9AAA0RuTs97x+buFTo5pwkvprzMx2/Vy7jhVQH6zMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAa15kBAJwW16iBL2NlBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNH+7BwAAu0TOfs/uEQA0AVZmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA022Nm//79uv3229W5c2e1b99effv21ZYtW9yPW5allJQUhYWFKTAwUHFxcdq5c6eNEwMAAF9ia8wcPnxYV155pQICAvTBBx/oq6++0jPPPKOOHTu690lPT1dGRoaWLFmi/Px8hYaGauTIkSovL7dvcAAA4DNsvWjewoULFR4eruzsbPe2yMhI939blqXMzEwlJydr/PjxkqQVK1bI5XJp5cqVmjJlypkeGQAA+BhbV2ZWr16tAQMGaMKECeratav69eunl156yf14QUGBiouLFR8f797mdDo1dOhQ5eXl1fmaFRUVKisr87gBAICWy9aVme+//17Lli3TjBkz9Oijj2rTpk164IEH5HQ6deedd6q4uFiS5HK5PJ7ncrm0Z8+eOl8zLS1N8+bNa/bZATQdvlYAQGPYujJTXV2tyy67TKmpqerXr5+mTJmie+65R8uWLfPYz+FweNy3LKvWthpJSUkqLS1134qKipptfgAAYD9bY6Zbt27q3bu3x7aYmBjt3btXkhQaGipJ7hWaGiUlJbVWa2o4nU4FBwd73AAAQMtla8xceeWV2r17t8e2b775RhEREZKkqKgohYaGKicnx/14ZWWlcnNzFRsbe0ZnBQAAvsnW98w89NBDio2NVWpqqm6++WZt2rRJy5cv1/LlyyX9dnopMTFRqampio6OVnR0tFJTU9W+fXtNnDjRztEBAPXUmPdEFT41qgknQUtla8wMHDhQq1atUlJSkubPn6+oqChlZmbqtttuc+8za9YsHTt2TAkJCTp8+LAGDRqkNWvWKCgoyMbJAQCAr3BYlmXZPURzKisrU0hIiEpLS3n/DOCj+DQTToaVmdarIb+/bf86AwAAgMYgZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEbzKmbOP/98/fTTT7W2HzlyROeff36jhwIAAKgvr2KmsLBQVVVVtbZXVFRo//79jR4KAACgvvwbsvPq1avd//3RRx8pJCTEfb+qqkpr165VZGRkkw0HAABwOg2KmbFjx0qSHA6HJk2a5PFYQECAIiMj9cwzzzTZcAAAAKfToJiprq6WJEVFRSk/P19dunRplqEAAADqq0ExU6OgoKCp5wAAAPCKVzEjSWvXrtXatWtVUlLiXrGp8eqrrzZ6MAAAgPrwKmbmzZun+fPna8CAAerWrZscDkdTzwUAAFAvXsVMVlaWXnvtNd1xxx1NPQ8AAECDeHWdmcrKSsXGxjb1LAAAAA3mVcxMnjxZK1eubOpZAAAAGsyr00y//vqrli9fro8//liXXHKJAgICPB7PyMhokuEAAABOx6uY2b59u/r27StJ2rFjh8djvBkYAACcSV7FzLp165p6DgAAAK949Z4ZAAAAX+HVysywYcNOeTrpk08+8XogAACAhvAqZmreL1Pj+PHj+uKLL7Rjx45aX0AJAADQnLyKmWeffbbO7SkpKfr5558bNRAAAEBDNOl7Zm6//Xa+lwkAAJxRTRozGzZsULt27ZryJQEAAE7Jq9NM48eP97hvWZZ++OEHbd68WXPmzGmSwQAAAOrDq5gJCQnxuN+mTRv17NlT8+fPV3x8fJMMBsAskbPfs3sEAK2UVzGTnZ3d1HMAAAB4xauYqbFlyxbt2rVLDodDvXv3Vr9+/ZpqLgAAgHrxKmZKSkp06623av369erYsaMsy1JpaamGDRumN998U+ecc05TzwkAAFAnrz7NNH36dJWVlWnnzp06dOiQDh8+rB07dqisrEwPPPBAU88IAABwUl6tzHz44Yf6+OOPFRMT497Wu3dvLV26lDcAAwCAM8qrlZnq6moFBATU2h4QEKDq6upGDwUAAFBfXsXM8OHD9eCDD+rAgQPubfv379dDDz2kESNGNNlwAAAAp+NVzCxZskTl5eWKjIzUBRdcoAsvvFBRUVEqLy/X4sWLm3pGAACAk/LqPTPh4eHaunWrcnJy9PXXX8uyLPXu3VtXXXVVU88HAABwSg1amfnkk0/Uu3dvlZWVSZJGjhyp6dOn64EHHtDAgQN10UUX6bPPPmuWQQEAAOrSoJjJzMzUPffco+Dg4FqPhYSEaMqUKcrIyGiy4QAAAE6nQTGzbds2XXPNNSd9PD4+Xlu2bGn0UAAAAPXVoJj58ccf6/xIdg1/f38dPHiw0UMBAADUV4Ni5txzz9WXX3550se3b9+ubt26NXooAACA+mpQzFx33XV6/PHH9euvv9Z67NixY5o7d65Gjx7dZMMBAACcToM+mv3YY4/pnXfeUY8ePTRt2jT17NlTDodDu3bt0tKlS1VVVaXk5OTmmhUAAKCWBsWMy+VSXl6e7r//fiUlJcmyLEmSw+HQ1VdfrRdeeEEul6tZBgUAAKhLgy+aFxERoffff1+HDx/Wt99+K8uyFB0drbPPPrs55gMAADglr64ALElnn322Bg4c2JSzAAAANJhX380EAADgK4gZAABgNK9PMwEA0NwiZ7/n9XMLnxrVhJPAl7EyAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACj+UzMpKWlyeFwKDEx0b3NsiylpKQoLCxMgYGBiouL086dO+0bEgAA+ByfuM5Mfn6+li9frksuucRje3p6ujIyMvTaa6+pR48eevLJJzVy5Ejt3r1bQUFBNk0LtFyNuaYHANjF9pWZn3/+Wbfddpteeukljy+rtCxLmZmZSk5O1vjx49WnTx+tWLFCR48e1cqVK22cGAAA+BLbY2bq1KkaNWqUrrrqKo/tBQUFKi4uVnx8vHub0+nU0KFDlZeXd6bHBAAAPsrW00xvvvmmtm7dqvz8/FqPFRcXS5JcLpfHdpfLpT179pz0NSsqKlRRUeG+X1ZW1kTTAgAAX2TbykxRUZEefPBBvf7662rXrt1J93M4HB73Lcuqte330tLSFBIS4r6Fh4c32cwAAMD32BYzW7ZsUUlJifr37y9/f3/5+/srNzdXzz//vPz9/d0rMjUrNDVKSkpqrdb8XlJSkkpLS923oqKiZv1zAAAAe9l2mmnEiBH68ssvPbb9+c9/Vq9evfTII4/o/PPPV2hoqHJyctSvXz9JUmVlpXJzc7Vw4cKTvq7T6ZTT6WzW2QEAgO+wLWaCgoLUp08fj20dOnRQ586d3dsTExOVmpqq6OhoRUdHKzU1Ve3bt9fEiRPtGBkAAPggn7jOzMnMmjVLx44dU0JCgg4fPqxBgwZpzZo1XGMGAAC4OSzLsuweojmVlZUpJCREpaWlCg4OtnscwKdx0Ty0JIVPjbJ7BDRCQ35/236dGQAAgMYgZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNH+7BwBQW+Ts97x+buFTo5pwEsBc/O+o9WBlBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEbj6wyAFqYxl3AH8Bu+CsEsrMwAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBo/nYPALRUkbPfs3sEAGgVWJkBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEazNWbS0tI0cOBABQUFqWvXrho7dqx2797tsY9lWUpJSVFYWJgCAwMVFxennTt32jQxAADwNbbGTG5urqZOnaqNGzcqJydHJ06cUHx8vH755Rf3Punp6crIyNCSJUuUn5+v0NBQjRw5UuXl5TZODgAAfIWt15n58MMPPe5nZ2era9eu2rJli4YMGSLLspSZmank5GSNHz9ekrRixQq5XC6tXLlSU6ZMsWNsAADgQ3zqPTOlpaWSpE6dOkmSCgoKVFxcrPj4ePc+TqdTQ4cOVV5eni0zAgAA3+IzVwC2LEszZszQ4MGD1adPH0lScXGxJMnlcnns63K5tGfPnjpfp6KiQhUVFe77ZWVlzTQxAADwBT6zMjNt2jRt375db7zxRq3HHA6Hx33Lsmptq5GWlqaQkBD3LTw8vFnmBQAAvsEnYmb69OlavXq11q1bp/POO8+9PTQ0VNL/rdDUKCkpqbVaUyMpKUmlpaXuW1FRUfMNDgAAbGdrzFiWpWnTpumdd97RJ598oqioKI/Ho6KiFBoaqpycHPe2yspK5ebmKjY2ts7XdDqdCg4O9rgBAICWy9b3zEydOlUrV67Uu+++q6CgIPcKTEhIiAIDA+VwOJSYmKjU1FRFR0crOjpaqampat++vSZOnGjn6AAAwEfYGjPLli2TJMXFxXlsz87O1l133SVJmjVrlo4dO6aEhAQdPnxYgwYN0po1axQUFHSGpwUAAL7I1pixLOu0+zgcDqWkpCglJaX5BwIAAMbxiTcAAwAAeMtnrjMDAEBrFzn7Pa+fW/jUqCacxCyszAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaHw0GwCAJtSYj1fDO6zMAAAAoxEzAADAaMQMAAAwGu+ZAU6Bc98A4PtYmQEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEYjZgAAgNGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAAIDRiBkAAGA0YgYAABiNmAEAAEbzt3sAoD4iZ7/n9XMLnxrVhJMAgG9qzf9OsjIDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKPx0Wy0eI35uCIAwPexMgMAAIxGzAAAAKMRMwAAwGjEDAAAMBoxAwAAjEbMAAAAoxEzAADAaFxnBmcM13sBADQHVmYAAIDRiBkAAGA0YgYAABiN98wAANDKNeY9jYVPjWrCSbzDygwAADAaMQMAAIzGaaZWiI9IAwBaElZmAACA0YgZAABgNCNi5oUXXlBUVJTatWun/v3767PPPrN7JAAA4CN8/j0zb731lhITE/XCCy/oyiuv1Isvvqhrr71WX331lbp37273eLZ9nI33vQAA8BufX5nJyMjQ3XffrcmTJysmJkaZmZkKDw/XsmXL7B4NAAD4AJ+OmcrKSm3ZskXx8fEe2+Pj45WXl2fTVAAAwJf49Gmm//3vf6qqqpLL5fLY7nK5VFxcXOdzKioqVFFR4b5fWloqSSorK2uWGasrjnr93MbM1JifCwBAU2mu3681r2tZ1mn39emYqeFwODzuW5ZVa1uNtLQ0zZs3r9b28PDwZpmtMUIy7Z4AAIDGae7fZeXl5QoJCTnlPj4dM126dJGfn1+tVZiSkpJaqzU1kpKSNGPGDPf96upqHTp0SJ07dz5pALUGZWVlCg8PV1FRkYKDg+0ex+dxvOqPY9UwHK/641g1TEs7XpZlqby8XGFhYafd16djpm3bturfv79ycnI0btw49/acnBzdcMMNdT7H6XTK6XR6bOvYsWNzjmmU4ODgFvGX/EzheNUfx6phOF71x7FqmJZ0vE63IlPDp2NGkmbMmKE77rhDAwYM0BVXXKHly5dr7969uu++++weDQAA+ACfj5lbbrlFP/30k+bPn68ffvhBffr00fvvv6+IiAi7RwMAAD7A52NGkhISEpSQkGD3GEZzOp2aO3durVNwqBvHq/44Vg3D8ao/jlXDtObj5bDq85knAAAAH+XTF80DAAA4HWIGAAAYjZgBAABGI2YAAIDRiJlW6Prrr1f37t3Vrl07devWTXfccYcOHDhg91g+qbCwUHfffbeioqIUGBioCy64QHPnzlVlZaXdo/mkBQsWKDY2Vu3bt+dilXV44YUXFBUVpXbt2ql///767LPP7B7JJ3366acaM2aMwsLC5HA49K9//cvukXxaWlqaBg4cqKCgIHXt2lVjx47V7t277R7rjCJmWqFhw4bpn//8p3bv3q23335b3333nW666Sa7x/JJX3/9taqrq/Xiiy9q586devbZZ5WVlaVHH33U7tF8UmVlpSZMmKD777/f7lF8zltvvaXExEQlJyfr888/1x//+Edde+212rt3r92j+ZxffvlFl156qZYsWWL3KEbIzc3V1KlTtXHjRuXk5OjEiROKj4/XL7/8YvdoZwwfzYZWr16tsWPHqqKiQgEBAXaP4/MWLVqkZcuW6fvvv7d7FJ/12muvKTExUUeOHLF7FJ8xaNAgXXbZZVq2bJl7W0xMjMaOHau0tDQbJ/NtDodDq1at0tixY+0exRgHDx5U165dlZubqyFDhtg9zhnBykwrd+jQIf3jH/9QbGwsIVNPpaWl6tSpk91jwCCVlZXasmWL4uPjPbbHx8crLy/PpqnQUpWWlkpSq/p3iphppR555BF16NBBnTt31t69e/Xuu+/aPZIRvvvuOy1evJjvBkOD/O9//1NVVZVcLpfHdpfLpeLiYpumQktkWZZmzJihwYMHq0+fPnaPc8YQMy1ESkqKHA7HKW+bN2927z9z5kx9/vnnWrNmjfz8/HTnnXeqNZ1xbOjxkqQDBw7ommuu0YQJEzR58mSbJj/zvDlWqJvD4fC4b1lWrW1AY0ybNk3bt2/XG2+8YfcoZ5QR382E05s2bZpuvfXWU+4TGRnp/u8uXbqoS5cu6tGjh2JiYhQeHq6NGzfqiiuuaOZJfUNDj9eBAwc0bNgw9ze3tyYNPVaorUuXLvLz86u1ClNSUlJrtQbw1vTp07V69Wp9+umnOu+88+we54wiZlqImjjxRs2KTEVFRVOO5NMacrz279+vYcOGqX///srOzlabNq1rQbMxf7fwm7Zt26p///7KycnRuHHj3NtzcnJ0ww032DgZWgLLsjR9+nStWrVK69evV1RUlN0jnXHETCuzadMmbdq0SYMHD9bZZ5+t77//Xo8//rguuOCCVrMq0xAHDhxQXFycunfvrqeffloHDx50PxYaGmrjZL5p7969OnTokPbu3auqqip98cUXkqQLL7xQZ511lr3D2WzGjBm64447NGDAAPcK3969e3n/VR1+/vlnffvtt+77BQUF+uKLL9SpUyd1797dxsl809SpU7Vy5Uq9++67CgoKcq8AhoSEKDAw0ObpzhALrcr27dutYcOGWZ06dbKcTqcVGRlp3Xfffda+ffvsHs0nZWdnW5LqvKG2SZMm1Xms1q1bZ/doPmHp0qVWRESE1bZtW+uyyy6zcnNz7R7JJ61bt67Ov0eTJk2yezSfdLJ/o7Kzs+0e7YzhOjMAAMBorevkPwAAaHGIGQAAYDRiBgAAGI2YAQAARiNmAACA0YgZAABgNGIGAAAYjZgBAABGI2YAGKWqqkqxsbG68cYbPbaXlpYqPDxcjz32mE2TAbALVwAGYJz//ve/6tu3r5YvX67bbrtNknTnnXdq27Ztys/PV9u2bW2eEMCZRMwAMNLzzz+vlJQU7dixQ/n5+ZowYYI2bdqkvn372j0agDOMmAFgJMuyNHz4cPn5+enLL7/U9OnTOcUEtFLEDABjff3114qJidHFF1+srVu3yt/f3+6RANiANwADMNarr76q9u3bq6CgQPv27bN7HAA2YWUGgJE2bNigIUOG6IMPPlB6erqqqqr08ccfy+Fw2D0agDOMlRkAxjl27JgmTZqkKVOm6KqrrtLLL7+s/Px8vfjii3aPBsAGxAwA48yePVvV1dVauHChJKl79+565plnNHPmTBUWFto7HIAzjtNMAIySm5urESNGaP369Ro8eLDHY1dffbVOnDjB6SaglSFmAACA0TjNBAAAjEbMAAAAoxEzAADAaMQMAAAwGjEDAACMRswAAACjETMAAMBoxAwAADAaMQMAAIxGzAAAAKMRMwAAwGjEDAAAMNr/AwUZ7PnXVjqHAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Sample from the standard Normal distribution\n", "s = np.random.normal(size=1000)\n", "\n", "# Plot histogram\n", "count, bins, ignored = plt.hist(s, 30, density=False)\n", "plt.xlabel(\"X\")\n", "plt.ylabel(\"Count\")\n", "plt.title(\"Histogram\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 18, "id": "4e77b8aa-af37-4a10-ae31-fa8008a2bacb", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOB1JREFUeJzt3X9UVVX+//HXBeSKijSKP0BJUERIyRQrwSjJ0dSySB2bHEYdzdHUpvxZ2My3bPxI4+/KTF1jmkPWNIpm2jTqJEpG8/FHTuFAYh9RR0DLScBfIHC+f7i44w0EQS73Xs/zsdZdevbZ+5z3bZm83GefcyyGYRgCAAAwKQ9nFwAAAOBMhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEAAGBqhCEALmHt2rWyWCx2n1atWqlv377aunWrs8uTJAUHB2vMmDG1Hnfx4kW9/PLLSk1NrfeaANw8whAAl7JmzRqlp6fr888/16pVq+Tp6akhQ4boo48+cnZpdXbx4kXNmTOHMAS4KC9nFwAA1+rWrZt69epl2x44cKB+8pOf6L333tOQIUOcWBmAWxUzQwBcWuPGjeXt7a1GjRrZ2v7zn/9o0qRJateunby9vdWxY0e9+OKLKi4uliRdvnxZPXr0UGhoqAoKCmzj8vPz1bZtW/Xt21dlZWWSpDFjxqhZs2Y6fPiw+vXrp6ZNm6pVq1aaMmWKLl68WGN9J06cUEJCglq3bi2r1aqIiAgtWrRI5eXlkqScnBy1atVKkjRnzhzbJcC6XG4D4BjMDAFwKWVlZSotLZVhGDp9+rQWLFigCxcuaOTIkZKuBp24uDh9++23mjNnju68806lpaUpKSlJhw4d0rZt29S4cWN98MEHioqK0tixY7Vx40aVl5frF7/4hQzD0HvvvSdPT0/bOa9cuaLBgwdrwoQJeuGFF/T5559r7ty5On78eLWX57777jvFxMSopKREv//97xUcHKytW7dqxowZ+vbbb7V8+XIFBATok08+0cCBAzVu3Dg99dRTkmQLSACcjzAEwKX07t3bbttqtWrZsmV66KGHJEnvvPOOvvrqK33wwQf62c9+Jknq37+/mjVrpueff147duxQ//791blzZ/3xj3/UE088oddee03/+c9/lJqaqk8++UQBAQF25ygpKdH06dP1m9/8xna8Ro0a6cUXX9TevXvVp0+fKmtdvHixTp06pX/84x+65557JEkPPfSQysrKtGLFCj333HMKCwtTVFSUJKl9+/aVvh8A5+MyGQCXsm7dOu3bt0/79u3TX//6V40ePVqTJ0/WsmXLJEmffvqpmjZtquHDh9uNq7js9Pe//93WNmLECD399NOaOXOm5s6dq9mzZ6t///5VnvcXv/iF3XbFTNSuXbuuW+unn36qO+64wxaErq3FMAx9+umnN/alATgVM0MAXEpERESlBdTHjx/XrFmzlJCQoLNnz6pt27ayWCx241q3bi0vLy+dPXvWrn3s2LF666235O3tbZv5+TEvLy+1bNnSrq1t27aSVOl41zp79qyCg4MrtQcGBtY4FoDrYGYIgMu78847denSJR05ckQtW7bU6dOnZRiGXZ8zZ86otLRU/v7+trYLFy7ol7/8pcLCwuTj42Nbr/NjpaWllYJLfn6+JFUKSddq2bKl8vLyKrXn5uZKkl0tAFwXYQiAyzt06JCkq4uO+/Xrp/Pnz2vz5s12fdatWydJ6tevn61t4sSJOnHihFJSUrR69Wpt2bJFS5YsqfIc7777rt32+vXrJUl9+/a9bl39+vXTv/71Lx08eLBSLRaLRXFxcZKurnuSpEuXLlX/RQE4BZfJALiUjIwMlZaWSrp6mSklJUU7duzQ448/rpCQEI0aNUpvvvmmRo8erZycHEVGRuqzzz7TvHnzNHjwYP30pz+VJP3xj39UcnKy1qxZo65du6pr166aMmWKnn/+efXp08dunY+3t7cWLVqk8+fP6+6777bdTTZo0CDdd99916116tSpWrdunR5++GG98sor6tChg7Zt26bly5fr6aefVlhYmCTJ19dXHTp00Icffqh+/fqpRYsW8vf3r/ISGwAnMADABaxZs8aQZPfx8/Mz7rrrLmPx4sXG5cuXbX3Pnj1rTJw40QgICDC8vLyMDh06GImJibY+X331leHj42OMHj3a7hyXL182oqKijODgYOOHH34wDMMwRo8ebTRt2tT46quvjL59+xo+Pj5GixYtjKeffto4f/683fgOHTpUOubx48eNkSNHGi1btjQaNWpkdOnSxViwYIFRVlZm12/nzp1Gjx49DKvVakiqdBwAzmMxjB9deAcAExkzZow2bNig8+fPO7sUAE7CmiEAAGBqhCEAAGBqXCYDAACmxswQAAAwNcIQAAAwNcIQAAAwNR66WIPy8nLl5ubK19e30ruQAACAazIMQ0VFRQoMDJSHR/VzP4ShGuTm5iooKMjZZQAAgDo4efKk2rdvX20fwlANfH19JV39j9m8eXMnVwMAAG5EYWGhgoKCbD/Hq0MYqkHFpbHmzZsThgAAcDM3ssSFBdQAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUCEMAAMDUeAI1AFMqKytTWlqa8vLyFBAQoNjYWHl6ejq7LABOwMwQANNJSUlRaGio4uLiNHLkSMXFxSk0NFQpKSnOLg2AExCGAJhKSkqKhg8frsjISKWnp6uoqEjp6emKjIzU8OHDCUSACVkMwzCcXYQrKywslJ+fnwoKCnhRK+DmysrKFBoaqsjISG3evFkeHv/992B5ebni4+OVkZGh7OxsLpkBbq42P7+ZGQJgGmlpacrJydHs2bPtgpAkeXh4KDExUceOHVNaWpqTKgTgDIQhAKaRl5cnSerWrVuV+yvaK/oBMAfCEADTCAgIkCRlZGRUub+ivaIfAHMgDAEwjdjYWAUHB2vevHkqLy+321deXq6kpCSFhIQoNjbWSRUCcAbCEADT8PT01KJFi7R161bFx8fb3U0WHx+vrVu3auHChSyeBkyGhy4CMJWhQ4dqw4YNmj59umJiYmztISEh2rBhg4YOHerE6gA4A7fW14Bb64FbE0+gBm5ttfn5zcwQAFPy9PRU3759nV0GABfAmiEAAGBqhCEAAGBqXCYDYEqsGQJQgZkhAKbDW+sBXIswBMBUeGs9gB/j1voacGs9cOvgrfWAefDWegCoAm+tB1AVFlADMI1r31pf1QJq3loPmBNhCIBpVLyNftmyZVq5cqVycnJs+4KDg/XrX//arh8Ac+AyGQDTiI2NVevWrZWYmKhu3brZLaDu1q2bZs+erdatW/PWesBkCEMATOXae0YMw7B9AJgXYQiAaaSlpem7775TUlKSMjIyFBMTo+bNmysmJkaHDx/WvHnzdObMGRZQAyZDGAJgGhULo6dMmaKjR49q165dWr9+vXbt2qXs7GxNmTLFrh8Ac3CZMLRnzx4NGTJEgYGBslgs2rx5s23flStX9PzzzysyMlJNmzZVYGCgRo0apdzc3GqPuXbtWlkslkqfy5cvO/jbAHBFFQujMzIybG+tf/LJJ9W3b195enoqIyPDrh8Ac3CZu8kuXLig7t2761e/+pWGDRtmt+/ixYs6ePCgfve736l79+764Ycf9Nxzz+nRRx/V/v37qz1u8+bN9c0339i1NW7cuN7rB+B8Fy9eVFZW1nX3V/xj6vnnn9eiRYtUXFysnJwcBQcHy2q16oUXXlC7du3UtGlTHTx48LrHCQ8PV5MmTRzxFQA4gcuEoUGDBmnQoEFV7vPz89OOHTvs2t544w3dc889OnHihG6//fbrHtdisaht27b1WisA15SVlaWoqKga++Xm5uruu+++7v577rmn2vEHDhxQz549a10fANfkMmGotgoKCmSxWHTbbbdV2+/8+fPq0KGDysrKdNddd+n3v/+9evTo0TBFAmhQ4eHhOnDgQI39Pv30Uy1ZssTuUnu7du303HPP6cEHH7yh8wC4dbjku8ksFos2bdqk+Pj4KvdfvnxZ9913n8LDw5WcnHzd43zxxRc6evSoIiMjVVhYqNdee00ff/yx/vnPf6pz585VjikuLlZxcbFtu7CwUEFBQbybDLjFlJWVafXq1ZowYYJWrlypcePG8T4y4BZyS7+b7MqVK/r5z3+u8vJyLV++vNq+vXv3VkJCgrp3767Y2Fh98MEHCgsL0xtvvHHdMUlJSfLz87N9goKC6vsrAHABnp6e6tWrlySpV69eBCHAxNwqDF25ckUjRozQsWPHtGPHjlrP1Hh4eOjuu+9Wdnb2dfskJiaqoKDA9jl58uTNlg0AAFyY26wZqghC2dnZ2rVrl1q2bFnrYxiGoUOHDikyMvK6faxWq6xW682UCgAA3IjLhKHz58/r6NGjtu1jx47p0KFDatGihQIDAzV8+HAdPHhQW7duVVlZmfLz8yVJLVq0kLe3tyRp1KhRateunZKSkiRJc+bMUe/evdW5c2cVFhbq9ddf16FDh/Tmm282/BcEAAAuyWXC0P79+xUXF2fbnjZtmiRp9OjRevnll7VlyxZJ0l133WU3bteuXerbt68k6cSJE/Lw+O+Vv3PnzunXv/618vPz5efnpx49emjPnj013jYLAADMwyXvJnMltVmNDsC9HDx4UFFRUTw3CLgF3dJ3kwEAANQnwhAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1whAAADA1L2cXAADXk52draKiIocdPzMz0+5XR/H19VXnzp0deg4AdUcYAuCSsrOzFRYW1iDnSkhIcPg5jhw5QiACXBRhCIBLqpgRSk5OVkREhEPOcenSJeXk5Cg4OFg+Pj4OOUdmZqYSEhIcOsMF4OYQhgC4tIiICPXs2dNhx+/Tp4/Djg3APbCAGgAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmJrLhKE9e/ZoyJAhCgwMlMVi0ebNm+32G4ahl19+WYGBgfLx8VHfvn11+PDhGo+7ceNG3XHHHbJarbrjjju0adMmB30DAADgjlwmDF24cEHdu3fXsmXLqtw/f/58LV68WMuWLdO+ffvUtm1b9e/fv9oHmaWnp+uJJ57QL3/5S/3zn//UL3/5S40YMUL/+Mc/HPU1AACAm3GZhy4OGjRIgwYNqnKfYRhaunSpXnzxRQ0dOlSS9M4776hNmzZav369JkyYUOW4pUuXqn///kpMTJQkJSYmavfu3Vq6dKnee+89x3wRAADgVlxmZqg6x44dU35+vgYMGGBrs1qteuCBB/T5559fd1x6errdGEl66KGHqh1TXFyswsJCuw8AALh1uczMUHXy8/MlSW3atLFrb9OmjY4fP17tuKrGVByvKklJSZozZ85NVAugvrRtZpHPuSNSrlv8u61KPueOqG0zi7PLAFANtwhDFSwW+79QDMOo1HazYxITEzVt2jTbdmFhoYKCgupQLYCbNSHKWxF7Jkh7nF1J3UXo6vcA4LrcIgy1bdtW0tWZnoCAAFv7mTNnKs38/Hjcj2eBahpjtVpltVpvsmIA9WHlgRI98f/WKiI83Nml1FlmVpZWLhqpR51dCIDrcoswFBISorZt22rHjh3q0aOHJKmkpES7d+/WH/7wh+uOi46O1o4dOzR16lRb2/bt2xUTE+PwmgHcvPzzhi7dFiYF3uXsUursUn658s8bzi4DQDVcJgydP39eR48etW0fO3ZMhw4dUosWLXT77bfrueee07x589S5c2d17txZ8+bNU5MmTTRy5EjbmFGjRqldu3ZKSkqSJD377LO6//779Yc//EGPPfaYPvzwQ+3cuVOfffZZg38/AADgmlwmDO3fv19xcXG27Yp1O6NHj9batWs1a9YsXbp0SZMmTdIPP/yge++9V9u3b5evr69tzIkTJ+Th8d+FljExMXr//ff129/+Vr/73e/UqVMn/fnPf9a9997bcF8MAAC4NIthGMzfVqOwsFB+fn4qKChQ8+bNnV0OYBoHDx5UVFSUDhw4oJ49ezq7nDq7Vb4H4G5q8/Pbfe9XBQAAqAeEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGqEIQAAYGou89BFALjWxYsXJV19To+jXLp0STk5OQoODpaPj49DzpGZmemQ4wKoP4QhAC4pKytLkjR+/HgnV1I/rn1aPgDXQhgC4JLi4+MlSeHh4WrSpIlDzpGZmamEhAQlJycrIiLCIeeQrgahzp07O+z4AG4OYQiAS/L399dTTz3VIOeKiIjgVRmAibGAGgAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmBphCAAAmJqXswsAAABSWVmZ0tLSlJeXp4CAAMXGxsrT09PZZZkCM0MAADhZSkqKQkNDFRcXp5EjRyouLk6hoaFKSUlxdmmmQBgCAMCJUlJSNHz4cEVGRio9PV1FRUVKT09XZGSkhg8fTiBqAIQhAACcpKysTNOnT9cjjzyijRs36vLly/roo490+fJlbdy4UY888ohmzJihsrIyZ5d6SyMMAQDgJGlpacrJyVFMTIzCwsLsLpOFhYUpOjpax44dU1pamrNLvaURhgAAcJK8vDxJUmJiYpWXyWbPnm3XD47B3WQAADhJ69atJUn33XefNm/eLA+Pq3MUvXv31ubNm3X//fdr7969tn5wDGaGAABwURaLxdklmAJhCAAAJzlz5owkae/evYqPj7e7TBYfH6+9e/fa9YNjEIYAAHCSgIAASdK8efP09ddfKyYmRs2bN1dMTIwyMjL0P//zP3b94BisGQIAwEliY2MVHByszz//XEeOHNHevXttT6Du06ePhg0bppCQEMXGxjq71FsaM0MAADiJp6enFi1apK1bt2rYsGGyWq165JFHZLVaNWzYMG3dulULFy7ktRwOxswQAAAOcvHiRWVlZVXbJzg4WPPnz9eSJUsUExNja2/Xrp3mz5+v4OBgHTx4sMZzhYeHq0mTJjddsxm5TRgKDg7W8ePHK7VPmjRJb775ZqX21NRUxcXFVWrPzMxUeHi4Q2oEAOBaWVlZioqKqtPYU6dOaebMmTfc/8CBA+rZs2edzmV2bhOG9u3bZ/c48oyMDPXv318/+9nPqh33zTffqHnz5rbtVq1aOaxGAACuFR4ergMHDtxw/8zMTCUkJCg5OVkRERG1Phfqxm3C0I9DzKuvvqpOnTrpgQceqHZc69atddtttzmwMgAAqtakSZM6zdZEREQwy9OA3HIBdUlJiZKTkzV27NgaH0jVo0cPBQQEqF+/ftq1a1eNxy4uLlZhYaHdBwAA3LrcMgxt3rxZ586d05gxY67bJyAgQKtWrdLGjRuVkpKiLl26qF+/ftqzZ0+1x05KSpKfn5/tExQUVM/VAwAAV+I2l8mutXr1ag0aNEiBgYHX7dOlSxd16dLFth0dHa2TJ09q4cKFuv/++687LjExUdOmTbNtFxYWEogAALiFuV0YOn78uHbu3KmUlJRaj+3du7eSk5Or7WO1WmW1WutaHgAAcDNud5lszZo1at26tR5++OFaj/3yyy95pDkASVfXHr777ruSpHfffVclJSVOrgiAs7hVGCovL9eaNWs0evRoeXnZT2olJiZq1KhRtu2lS5dq8+bNys7O1uHDh5WYmKiNGzdqypQpDV02ABcza9YsNWnSRIsXL5YkLV68WE2aNNGsWbOcXBkAZ3Cry2Q7d+7UiRMnNHbs2Er78vLydOLECdt2SUmJZsyYoVOnTsnHx0ddu3bVtm3bNHjw4IYsGYCLmTVrlhYsWCAPD/t/CxqGoQULFkiS5s+f74zSADiJxTAMw9lFuLLCwkL5+fmpoKDA7uGNAFxPTa8+KCkpUZ8+fVReXq4+ffooNDRU77zzjkaPHq2jR49q79698vDw0N69e+Xt7X3d4/DaAzjKwYMHFRUVxdOk60Ftfn671cwQAFSnNq8+2Lt3r/bu3StJeuedd2zt5eXlio6OrnYsP6iAWwthCMAto6ZXH0yfPl2pqamSpPvvv18jR46Ul5eXSktLtX79ettzyPr27atFixZVex4Atw7CEIBbRk2vPmjXrp0kqVu3btq1a5fduqHx48crMjJS//rXv9SuXTtmfgATcau7yQDgZnTv3l3S1eeVlZeX2+0rLy/XyZMn7foBMAfCEADTqHhqfVFRkdq3b69Vq1YpNzdXq1atUvv27VVUVGTXD4A5cJkMgGlUXCaTpDNnzmjChAm27Wtf+nxtPwC3PsIQANOIjY1VcHCw/P399d133+n48eO2fR06dJC/v7/Onj2r2NhYJ1YJoKERhgCYhqenpxYtWqThw4fr4Ycf1syZM+Xj46NLly7pk08+0bZt27RhwwZ5eno6u1QADYgwBMBUhg4dqg0bNmj69OnaunWrrT0kJEQbNmzQ0KFDnVgdAGcgDAEwnaFDh+qxxx5TWlqa8vLyFBAQoNjYWGaEAJMiDAEwJU9PT/Xt29fZZQBwAdxaDwAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATK1OYai0tFQ7d+7UypUrVVRUJEnKzc3V+fPn67U4AAAAR6v1E6iPHz+ugQMH6sSJEyouLlb//v3l6+ur+fPn6/Lly1qxYoUj6gQAAHCIWs8MPfvss+rVq5d++OEH+fj42Noff/xx/f3vf6/X4gAAAByt1jNDn332mfbu3Stvb2+79g4dOujUqVP1VhgAAEBDqPXMUHl5ucrKyiq1//vf/5avr2+9FAUAANBQah2G+vfvr6VLl9q2LRaLzp8/r5deekmDBw+uz9oAAAAcrtaXyZYsWaK4uDjdcccdunz5skaOHKns7Gz5+/vrvffec0SNAAAADlPrMBQYGKhDhw7pvffe08GDB1VeXq5x48bpF7/4hd2CagAAAHdQ6zAkST4+Pho7dqzGjh1b3/UAAAA0qFqHoXXr1lW7f9SoUXUuBgAAV5ednW174HB9y8zMtPvVUXx9fdW5c2eHnsOdWAzDMGoz4Cc/+Ynd9pUrV3Tx4kV5e3urSZMm+s9//lOvBTpbYWGh/Pz8VFBQoObNmzu7HACAE2VnZyssLMzZZdSLI0eO3NKBqDY/v2s9M/TDDz9UasvOztbTTz+tmTNn1vZwAAC4jYoZoeTkZEVERNT78S9duqScnBwFBwc7bB1uZmamEhISHDa75Y7qtGboxzp37qxXX31VCQkJysrKqo9DAgDgsiIiItSzZ0+HHLtPnz4OOS6ur97eWu/p6anc3Nz6OhwAAECDqPXM0JYtW+y2DcNQXl6eli1bRpoFAABup9ZhKD4+3m7bYrGoVatWevDBB7Vo0aL6qgsAAKBB1DoMlZeXO6IOAAAAp6i3NUMAAADu6IZmhqZNm3bDB1y8eHGdiwEAAGhoNxSGvvzyyxs6mMViualiAAAAGtoNhaFdu3Y5uo4avfzyy5ozZ45dW5s2bZSfn3/dMbt379a0adN0+PBhBQYGatasWZo4caKjSwUAAG6kXh662FC6du2qnTt32rY9PT2v2/fYsWMaPHiwxo8fr+TkZO3du1eTJk1Sq1atNGzYsIYoFwAAuIE6haF9+/bpL3/5i06cOKGSkhK7fSkpKfVSWFW8vLzUtm3bG+q7YsUK3X777Vq6dKmkq08L3b9/vxYuXEgYAgDUWdtmFvmcOyLluuc9SD7njqhtM5a1XKvWYej999/XqFGjNGDAAO3YsUMDBgxQdna28vPz9fjjjzuiRpvs7GwFBgbKarXq3nvv1bx589SxY8cq+6anp2vAgAF2bQ899JBWr16tK1euqFGjRlWOKy4uVnFxsW27sLCw/r4AAMDtTYjyVsSeCdIeZ1dSNxG6+h3wX7UOQ/PmzdOSJUs0efJk+fr66rXXXlNISIgmTJiggIAAR9QoSbr33nu1bt06hYWF6fTp05o7d65iYmJ0+PBhtWzZslL//Px8tWnTxq6tTZs2Ki0t1ffff3/dWpOSkiqtTQIAoMLKAyV64v+tVUR4uLNLqZPMrCytXDRSjzq7EBdS6zD07bff6uGHH5YkWa1WXbhwQRaLRVOnTtWDDz7osCAxaNAg2+8jIyMVHR2tTp066Z133rnurf8/vrvNMIwq26+VmJhod7zCwkIFBQXdTOkAgFtI/nlDl24LkwLvcnYpdXIpv1z55w1nl+FSah2GWrRooaKiIklSu3btlJGRocjISJ07d04XL16s9wKvp2nTpoqMjFR2dnaV+9u2bVvpTrMzZ87Iy8urypmkClarVVartV5rBQAAruuGV38dOnRIkhQbG6sdO3ZIkkaMGKFnn31W48eP15NPPql+/fo5pMiqFBcXKzMz87qXu6Kjo211Vti+fbt69ep13fVCAADAfG44DPXs2VNRUVGKiIjQk08+KenqJaUZM2bo9OnTGjp0qFavXu2wQmfMmKHdu3fr2LFj+sc//qHhw4ersLBQo0ePttUyatQoW/+JEyfq+PHjmjZtmjIzM/X2229r9erVmjFjhsNqBAAA7ueGw9DevXvVs2dPLVy4UJ06dVJCQoJ2796tWbNmacuWLVq8eLF+8pOfOKzQf//733ryySfVpUsXDR06VN7e3vriiy/UoUMHSVJeXp5OnDhh6x8SEqKPP/5Yqampuuuuu/T73/9er7/+OrfVAwAAOze8Zig6OlrR0dF6/fXX9cEHH2jNmjX66U9/quDgYI0dO1ajR49W+/btHVbo+++/X+3+tWvXVmp74IEHdPDgQQdVBAAAbgW1fmKUj4+PRo8erdTUVB05ckRPPvmkVq5cqZCQEA0ePNgRNQIAADjMTT0+s1OnTnrhhRf04osvqnnz5vrb3/5WX3UBAAA0iDq/m2z37t16++23tXHjRnl6emrEiBEaN25cfdYGAADgcLUKQydPntTatWu1du1aHTt2TDExMXrjjTc0YsQINW3a1FE1AgAAOMwNh6H+/ftr165datWqlUaNGqWxY8eqS5cujqwNAADA4W44DPn4+Gjjxo165JFH5Onp6ciaAAAAGswNh6EtW7Y4sg4AAFxexWunHPXYlkuXLiknJ0fBwcHy8fFxyDkyMzMdclx3VucF1AAAmE1WVpYkafz48U6u5Ob5+vo6uwSXQRgCAOAGxcfHS5LCw8PVpEmTej9+ZmamEhISlJycrIiIiHo/fgVfX1917tzZYcd3N4QhAABukL+/v5566imHnyciIkI9e/Z0+Hlw1U09dBEAAMDdEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpeTm7AJhDWVmZ0tLSlJeXp4CAAMXGxsrT09PZZQEAwMwQHC8lJUWhoaGKi4vTyJEjFRcXp9DQUKWkpDi7NAAACENwrJSUFA0fPlyRkZFKT09XUVGR0tPTFRkZqeHDhxOIAABOZzEMw3B2Ea6ssLBQfn5+KigoUPPmzZ1djlspKytTaGioIiMjtXnzZnl4/Dd7l5eXKz4+XhkZGcrOzuaSGQBIOnjwoKKionTgwAH17NnT2eW4tdr8/GZmCA6TlpamnJwczZ492y4ISZKHh4cSExN17NgxpaWlOalCAAAIQ3CgvLw8SVK3bt2q3F/RXtEPAABnIAzBYQICAiRJGRkZVe6vaK/oBwCAMxCG4DCxsbEKDg7WvHnzVF5ebrevvLxcSUlJCgkJUWxsrJMqBACA5wyhji5evKisrKwa+02ePFmzZs2y3Vbv6empsrIyrV+/XmlpaZo/f77++c9/VnuM8PBwNWnSpL5KBwDADmEIdZKVlaWoqKgb7r9nzx7t2bOnUvvMmTNrHMtdFQAARyIMoU7Cw8N14MCBG+5fVlamzZs3a968eZo9e7bi4+Nv+Hb68PDwupYJAECN3CYMJSUlKSUlRVlZWfLx8VFMTIz+8Ic/qEuXLtcdk5qaqri4uErtmZmZ/IC9SU2aNKn1bI2np6fmzZunYcOGMdMDAHAZbrOAevfu3Zo8ebK++OIL7dixQ6WlpRowYIAuXLhQ49hvvvlGeXl5tk/nzp0boGIAAOAO3GZm6JNPPrHbXrNmjVq3bq0DBw7o/vvvr3Zs69atddtttzmwOgAA4K7cZmboxwoKCiRJLVq0qLFvjx49FBAQoH79+mnXrl3V9i0uLlZhYaHdBwAA3LrcZmboWoZhaNq0abrvvvuu+3Rj6erD/FatWqWoqCgVFxfrT3/6k/r166fU1NTrziYlJSVpzpw5jiodAGAiN/oYkgqZmZl2v9YGjyGpO7d8UevkyZO1bds2ffbZZ2rfvn2txg4ZMkQWi0Vbtmypcn9xcbGKi4tt24WFhQoKCuJFrfWAFxACMJuKv/caAn+32qvNi1rdbmbomWee0ZYtW7Rnz55aByFJ6t27t5KTk6+732q1ymq13kyJAABIqv1jSC5duqScnBwFBwfLx8en1udC3bhNGDIMQ88884w2bdqk1NRUhYSE1Ok4X375Je/CAgA0iLo8hqRPnz4OqgbX4zZhaPLkyVq/fr0+/PBD+fr6Kj8/X5Lk5+dnS8+JiYk6deqU1q1bJ0launSpgoOD1bVrV5WUlCg5OVkbN27Uxo0bnfY9AACoSklJiZYvX65vv/1WnTp10qRJk+Tt7e3sskzBbcLQW2+9JUnq27evXfuaNWs0ZswYSVJeXp5OnDhh21dSUqIZM2bo1KlT8vHxUdeuXbVt2zYNHjy4ocoGAKBGs2bN0pIlS1RaWmprmzlzpqZOnar58+c7sTJzcJswdCPrvNeuXWu3PWvWLM2aNctBFQEAcPNmzZqlBQsWqE2bNpo7d64eeeQRbd26Vb/97W+1YMECSSIQOZhb3k3WkGqzGh3V424yALBXUlKipk2bqmXLlvr3v/8tL6//zlGUlpaqffv2Onv2rC5cuMAls1qqzc9vt33oIgAA7m758uUqLS3V3Llz7YKQJHl5eemVV15RaWmpli9f7qQKzYEwBACAk3z77beSpEceeaTK/RXtFf3gGIQhAACcpFOnTpKkrVu3Vrm/or2iHxyDNUM1YM1Q/WHNEADYY82Q47BmCAAAN+Dt7a2pU6fq9OnTat++vVatWqXc3FytWrVK7du31+nTpzV16lSCkIO5za31AADciipum1+yZIkmTJhga/fy8tLMmTO5rb4BEIYAAHCy+fPna+7cuTyB2kkIQwAAuABvb28999xzzi7DlFgzBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATI0wBAAATM3L2QXAdWRnZ6uoqMhhx8/MzLT71RF8fX3VuXNnhx0fAHDrIQxB0tUgFBYW1iDnSkhIcOjxjxw5QiACANwwwhAkyTYjlJycrIiICIec49KlS8rJyVFwcLB8fHzq/fiZmZlKSEhw6OwWAODWQxiCnYiICPXs2dNhx+/Tp4/Djg0AQF2wgBoAAJgaYQgAAJgaYQgAAJgaYQgAAJgaYQgAAJgaYQgAAJgaYQgAAJia24Wh5cuXKyQkRI0bN1ZUVJTS0tKq7b97925FRUWpcePG6tixo1asWNFAlQIAAHfgVmHoz3/+s5577jm9+OKL+vLLLxUbG6tBgwbpxIkTVfY/duyYBg8erNjYWH355ZeaPXu2fvOb32jjxo0NXDkAAHBVbvUE6sWLF2vcuHF66qmnJElLly7V3/72N7311ltKSkqq1H/FihW6/fbbtXTpUklXn668f/9+LVy4UMOGDWvI0t1C22YW+Zw7IuW6VUa28Tl3RG2bWZxdBgDAzbhNGCopKdGBAwf0wgsv2LUPGDBAn3/+eZVj0tPTNWDAALu2hx56SKtXr9aVK1fUqFGjSmOKi4tVXFxs2y4sLKyH6t3DhChvReyZIO1xdiV1E6Gr3wEAgNpwmzD0/fffq6ysTG3atLFrb9OmjfLz86sck5+fX2X/0tJSff/99woICKg0JikpSXPmzKm/wt3IygMleuL/rVVEeLizS6mTzKwsrVw0Uo86uxAAgFtxmzBUwWKxvwxiGEaltpr6V9VeITExUdOmTbNtFxYWKigoqK7lupX884Yu3RYmBd7l7FLq5FJ+ufLPG84uAwDgZtwmDPn7+8vT07PSLNCZM2cqzf5UaNu2bZX9vby81LJlyyrHWK1WWa3W+ikaAAC4PLdZKevt7a2oqCjt2LHDrn3Hjh2KiYmpckx0dHSl/tu3b1evXr2qXC8EAADMx23CkCRNmzZNf/zjH/X2228rMzNTU6dO1YkTJzRx4kRJVy9xjRo1ytZ/4sSJOn78uKZNm6bMzEy9/fbbWr16tWbMmOGsrwAAAFyM21wmk6QnnnhCZ8+e1SuvvKK8vDx169ZNH3/8sTp06CBJysvLs3vmUEhIiD7++GNNnTpVb775pgIDA/X6669zWz0AALBxqzAkSZMmTdKkSZOq3Ld27dpKbQ888IAOHjzo4KoAAIC7cqvLZAAAAPWNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEzN7Z4zBMe4ePGiJDn0mUyXLl1STk6OgoOD5ePjU+/Hz8zMrPdjAgBufYQhSJKysrIkSePHj3dyJTfP19fX2SUAANwIYQiSpPj4eElSeHi4mjRp4pBzZGZmKiEhQcnJyYqIiHDIOXx9fdW5c2eHHBsAcGsiDEGS5O/vr6eeeqpBzhUREaGePXs2yLkAAKgJC6gBAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpEYYAAICpuUUYysnJ0bhx4xQSEiIfHx916tRJL730kkpKSqodN2bMGFksFrtP7969G6hqAADgDrycXcCNyMrKUnl5uVauXKnQ0FBlZGRo/PjxunDhghYuXFjt2IEDB2rNmjW2bW9vb0eXCwAA3IhbhKGBAwdq4MCBtu2OHTvqm2++0VtvvVVjGLJarWrbtq2jSwQAAG7KLS6TVaWgoEAtWrSosV9qaqpat26tsLAwjR8/XmfOnKm2f3FxsQoLC+0+AADg1uWWYejbb7/VG2+8oYkTJ1bbb9CgQXr33Xf16aefatGiRdq3b58efPBBFRcXX3dMUlKS/Pz8bJ+goKD6Lh8AALgQp4ahl19+udIC5x9/9u/fbzcmNzdXAwcO1M9+9jM99dRT1R7/iSee0MMPP6xu3bppyJAh+utf/6ojR45o27Zt1x2TmJiogoIC2+fkyZP18l0BAIBrcuqaoSlTpujnP/95tX2Cg4Ntv8/NzVVcXJyio6O1atWqWp8vICBAHTp0UHZ29nX7WK1WWa3WWh8bAAC4J6eGIX9/f/n7+99Q31OnTikuLk5RUVFas2aNPDxqP6l19uxZnTx5UgEBAbUeCwAAbk1usWYoNzdXffv2VVBQkBYuXKjvvvtO+fn5ys/Pt+sXHh6uTZs2SZLOnz+vGTNmKD09XTk5OUpNTdWQIUPk7++vxx9/3BlfAwAAuCC3uLV++/btOnr0qI4ePar27dvb7TMMw/b7b775RgUFBZIkT09Pff3111q3bp3OnTungIAAxcXF6c9//rN8fX0btH4AAOC63CIMjRkzRmPGjKmx37XByMfHR3/7298cWJW5Xbx4UVlZWTfcv6ysTJs3b5Ykbdy4UWVlZfL09LyhseHh4WrSpEldygQAoEYW49oEgUoKCwvl5+engoICNW/e3NnluIyDBw8qKiqqQc514MAB9ezZs0HOBQC4NdTm57dbzAzB9YSHh+vAgQM19vv00081a9YsxcbGauTIkfLy8lJpaanWr1+vtLQ0zZ8/Xw8++GCN5wIAwFGYGaoBM0N1V1ZWptDQUEVGRmrz5s12dwCWl5crPj5eGRkZys7OvuFLZgAA3Ija/Px2i7vJ4J7S0tKUk5Oj2bNnV3oUgoeHhxITE3Xs2DGlpaU5qUIAAAhDcKC8vDxJUrdu3arcX9Fe0Q8AAGcgDMFhKh5umZGRUeX+inYeggkAcCbCEBwmNjZWwcHBmjdvnsrLy+32lZeXKykpSSEhIYqNjXVShQAAEIbgQJ6enlq0aJG2bt2q+Ph4paenq6ioSOnp6YqPj9fWrVu1cOFCFk8DAJyKW+vhUEOHDtWGDRs0ffp0xcTE2NpDQkK0YcMGDR061InVAQDArfU14tb6+lFWVqa0tDTl5eUpICBAsbGxzAgBAByGhy7C5Xh6eqpv377OLgMAgEpYMwQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNMAQAAEyNJ1DXoOJtJYWFhU6uBAAA3KiKn9s38tYxwlANioqKJElBQUFOrgQAANRWUVGR/Pz8qu3Di1prUF5ertzcXPn6+spisTi7HLdWWFiooKAgnTx5kpfewiXwZxKuhj+T9ccwDBUVFSkwMFAeHtWvCmJmqAYeHh5q3769s8u4pTRv3pz/yeFS+DMJV8OfyfpR04xQBRZQAwAAUyMMAQAAUyMMocFYrVa99NJLslqtzi4FkMSfSbge/kw6BwuoAQCAqTEzBAAATI0wBAAATI0wBAAATI0wBAAATI0wBIfbs2ePhgwZosDAQFksFm3evNnZJcHkkpKSdPfdd8vX11etW7dWfHy8vvnmG2eXBRN76623dOedd9oethgdHa2//vWvzi7LNAhDcLgLFy6oe/fuWrZsmbNLASRJu3fv1uTJk/XFF19ox44dKi0t1YABA3ThwgVnlwaTat++vV599VXt379f+/fv14MPPqjHHntMhw8fdnZppsCt9WhQFotFmzZtUnx8vLNLAWy+++47tW7dWrt379b999/v7HIASVKLFi20YMECjRs3ztml3PJ4NxkA0ysoKJB09YcP4GxlZWX6y1/+ogsXLig6OtrZ5ZgCYQiAqRmGoWnTpum+++5Tt27dnF0OTOzrr79WdHS0Ll++rGbNmmnTpk264447nF2WKRCGAJjalClT9NVXX+mzzz5zdikwuS5duujQoUM6d+6cNm7cqNGjR2v37t0EogZAGAJgWs8884y2bNmiPXv2qH379s4uBybn7e2t0NBQSVKvXr20b98+vfbaa1q5cqWTK7v1EYYAmI5hGHrmmWe0adMmpaamKiQkxNklAZUYhqHi4mJnl2EKhCE43Pnz53X06FHb9rFjx3To0CG1aNFCt99+uxMrg1lNnjxZ69ev14cffihfX1/l5+dLkvz8/OTj4+Pk6mBGs2fP1qBBgxQUFKSioiK9//77Sk1N1SeffOLs0kyBW+vhcKmpqYqLi6vUPnr0aK1du7bhC4LpWSyWKtvXrFmjMWPGNGwxgKRx48bp73//u/Ly8uTn56c777xTzz//vPr37+/s0kyBMAQAAEyNJ1ADAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBAABTIwwBcEv5+fl69tlnFRoaqsaNG6tNmza67777tGLFCl28eNHZ5QFwI7ybDIDb+b//+z/16dNHt912m+bNm6fIyEiVlpbqyJEjevvttxUYGKhHH3200rgrV66oUaNGTqgYgCtjZgiA25k0aZK8vLy0f/9+jRgxQhEREYqMjNSwYcO0bds2DRkyRNLVd5CtWLFCjz32mJo2baq5c+dKkt566y116tRJ3t7e6tKli/70pz/Zjp2TkyOLxaJDhw7Z2s6dOyeLxaLU1FRJV9+3Z7FYtG3bNnXv3l2NGzfWvffeq6+//rrB/hsAqD+EIQBu5ezZs9q+fbsmT56spk2bVtnn2hexvvTSS3rsscf09ddfa+zYsdq0aZOeffZZTZ8+XRkZGZowYYJ+9atfadeuXbWuZebMmVq4cKH27dun1q1b69FHH9WVK1fq/N0AOAdhCIBbOXr0qAzDUJcuXeza/f391axZMzVr1kzPP/+8rX3kyJEaO3asOnbsqA4dOmjhwoUaM2aMJk2apLCwME2bNk1Dhw7VwoULa13LSy+9pP79+ysyMlLvvPOOTp8+rU2bNt30dwTQsAhDANzStbM/kvS///u/OnTokLp27ari4mJbe69evez6ZWZmqk+fPnZtffr0UWZmZq1riI6Otv2+RYsW6tKlS52OA8C5WEANwK2EhobKYrEoKyvLrr1jx46SJB8fH7v2qi6l/ThIGYZha/Pw8LC1VajNpa8fHxuA62NmCIBbadmypfr3769ly5bpwoULtR4fERGhzz77zK7t888/V0REhCSpVatWkqS8vDzb/msXU1/riy++sP3+hx9+0JEjRxQeHl7rmgA4FzNDANzO8uXL1adPH/Xq1Usvv/yy7rzzTnl4eGjfvn3KyspSVFTUdcfOnDlTI0aMUM+ePdWvXz999NFHSklJ0c6dOyVdnVnq3bu3Xn31VQUHB+v777/Xb3/72yqP9corr6hly5Zq06aNXnzxRfn7+ys+Pt4RXxmAIxkA4IZyc3ONKVOmGCEhIUajRo2MZs2aGffcc4+xYMEC48KFC4ZhGIYkY9OmTZXGLl++3OjYsaPRqFEjIywszFi3bp3d/n/9619G7969DR8fH+Ouu+4ytm/fbkgydu3aZRiGYezatcuQZHz00UdG165dDW9vb+Puu+82Dh065OivDcABLIZxzYVxAECNUlNTFRcXpx9++EG33Xabs8sBcJNYMwQAAEyNMAQAAEyNy2QAAMDUmBkCAACmRhgCAACmRhgCAACmRhgCAACmRhgCAACmRhgCAACmRhgCAACmRhgCAACmRhgCAACm9v8BtJERO6eNDPEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Sample from the standard Normal distribution\n", "s1 = np.random.normal(loc=0, size=1000)\n", "s2 = np.random.normal(loc=10, size=1000)\n", "s3 = np.random.normal(loc=5, size=1000)\n", "s = np.array((s1, s2, s3))\n", "\n", "# Boxplot\n", "plt.boxplot(s.T)\n", "plt.xlabel(\"Group\")\n", "plt.ylabel(\"Value\")\n", "plt.title(\"Boxplot\")\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "fd51f8d3-3ca1-4017-bde4-41230185c17e", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.9" } }, "nbformat": 4, "nbformat_minor": 5 }