

CSC196: Analyzing Data

Continuous Random Variables

Jason Pacheco and Cesim Erten

Outline

- Concepts of Calculus
- Continuous Probability Distributions
- Fundamental Rules of Probability

Outline

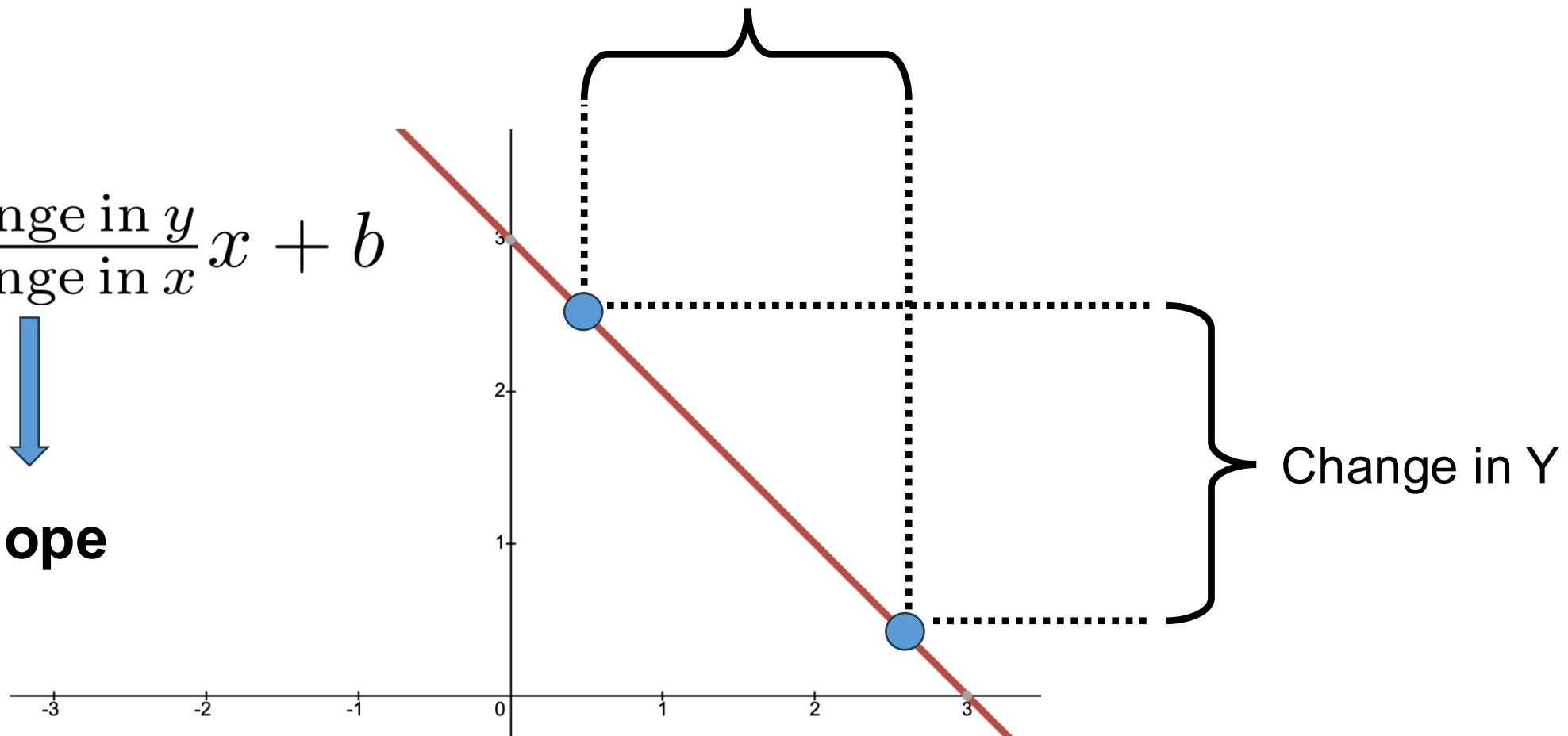
- Concepts of Calculus
- Continuous Probability Distributions
- Fundamental Rules of Probability

Equation for a Line

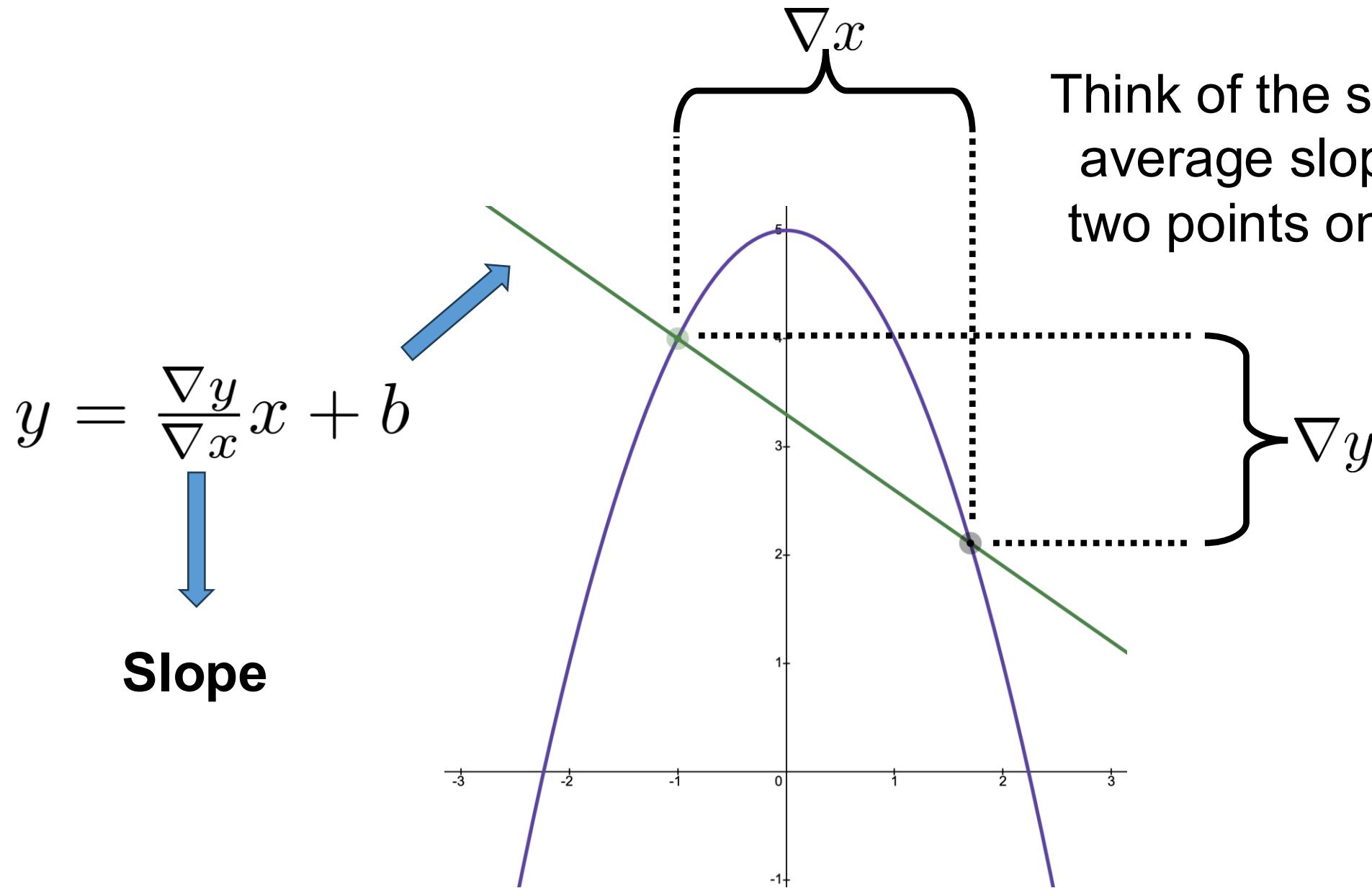
Recall the equation for a line in point / slope form...

$$y = \frac{\text{Change in } y}{\text{Change in } x} x + b$$

Slope



Secant

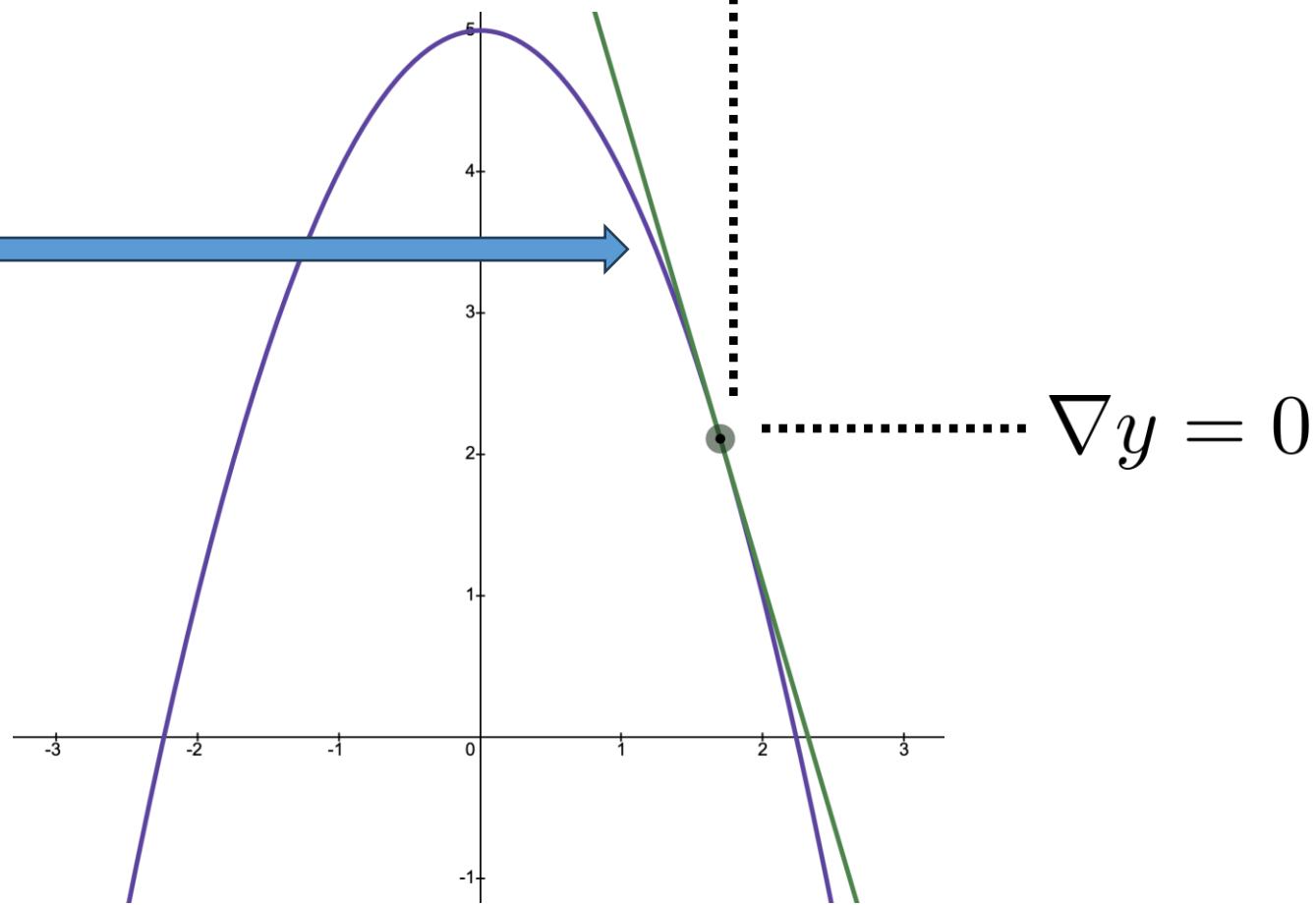


Think of the secant as the average slope between two points on a function.

Tangent

The slope of the tangent line appears to be undefined...

$$y = \frac{0}{0}x + b$$



$$\nabla x = 0$$

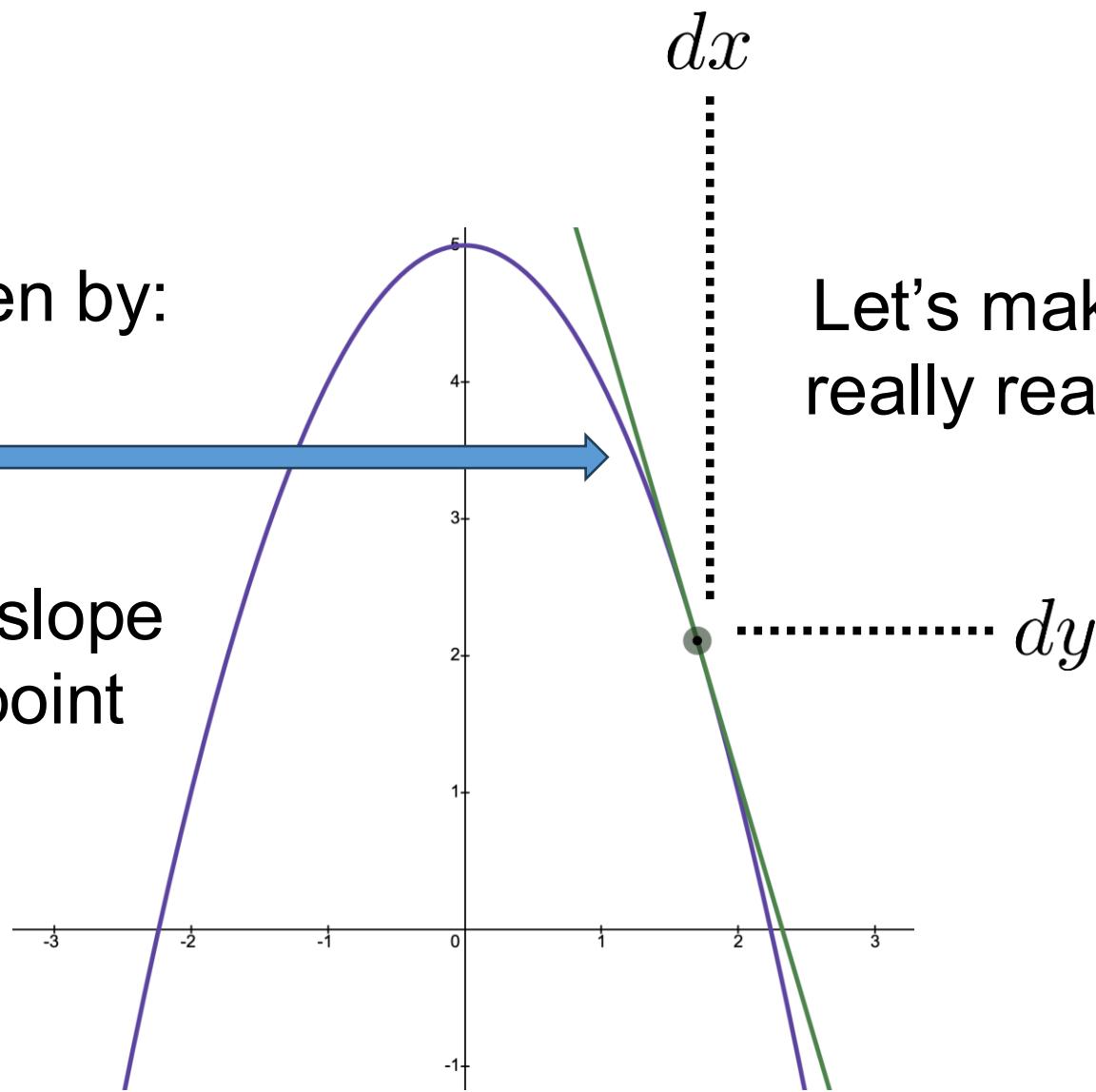
$$\nabla y = 0$$

Derivative

The slope is now given by:

$$\frac{dy}{dx}$$

The *derivative* is the slope
of the tangent at a point



How to Calculate a Derivative

To find the derivative of a function $y = f(x)$ we use the slope form:

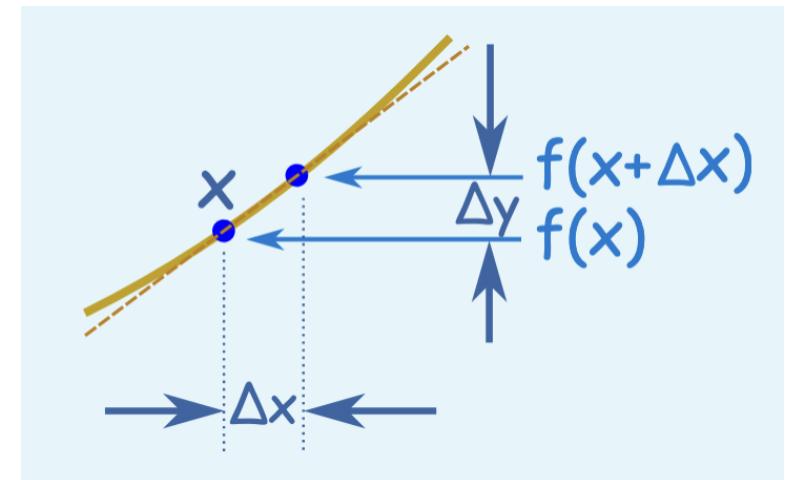
$$\text{Slope} = \frac{\text{Change in } y}{\text{Change in } x} = \frac{\nabla y}{\nabla x}$$

X changes from: $x \rightarrow x + \nabla x$

Y changes from: $f(x) \rightarrow f(x + \nabla x)$

Start with the slope form: $\frac{\nabla y}{\nabla x} = \frac{f(x + \nabla x) - f(x)}{\nabla x}$

Simplify, and make ∇x shrink towards zero...



Example: Derivative

Example: the function $f(x) = x^2$

The slope formula is: $\frac{f(x+\Delta x) - f(x)}{\Delta x}$

Use $f(x) = x^2$: $\frac{(x+\Delta x)^2 - x^2}{\Delta x}$

Expand $(x+\Delta x)^2$ to $x^2 + 2x \Delta x + (\Delta x)^2$: $\frac{x^2 + 2x \Delta x + (\Delta x)^2 - x^2}{\Delta x}$

Simplify (x^2 and $-x^2$ cancel): $\frac{2x \Delta x + (\Delta x)^2}{\Delta x}$

Simplify more (divide through by Δx): $2x + \Delta x$

Then, as Δx heads towards 0 we get: $2x$

Result: the derivative of x^2 is $2x$

In other words, the slope at x is $2x$

Derivative

Instead of saying “ ∇x heads towards zero” we write “ dx ” so we have:

$$\frac{d}{dx}x^2 = 2x$$

But what does this actually mean?

- For function x^2 the slope (or rate of change) at any point is $2x$
- So if $x=2$ then the slope is $2x=4$
- If $x=5$ then the slope is $2x=10$
- And so on...

Another Derivative Example

Example: What is $\frac{d}{dx}x^3$?

We know $f(x) = x^3$, and can calculate $f(x+\Delta x)$, so let's go:

The slope formula: $\frac{f(x+\Delta x) - f(x)}{\Delta x}$

Use $f(x) = x^3$: $\frac{(x+\Delta x)^3 - x^3}{\Delta x}$

Use $(x+\Delta x)^3 = x^3 + 3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3$

Replace $(x+\Delta x)^3$: $\frac{x^3 + 3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x}$

Simplify (x^3 and $-x^3$ cancel): $\frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$

Simplify more (divide through by Δx): $3x^2 + 3x \Delta x + (\Delta x)^2$

As Δx heads towards 0 we get: $3x^2$

Result: the derivative of x^3 is $3x^2$

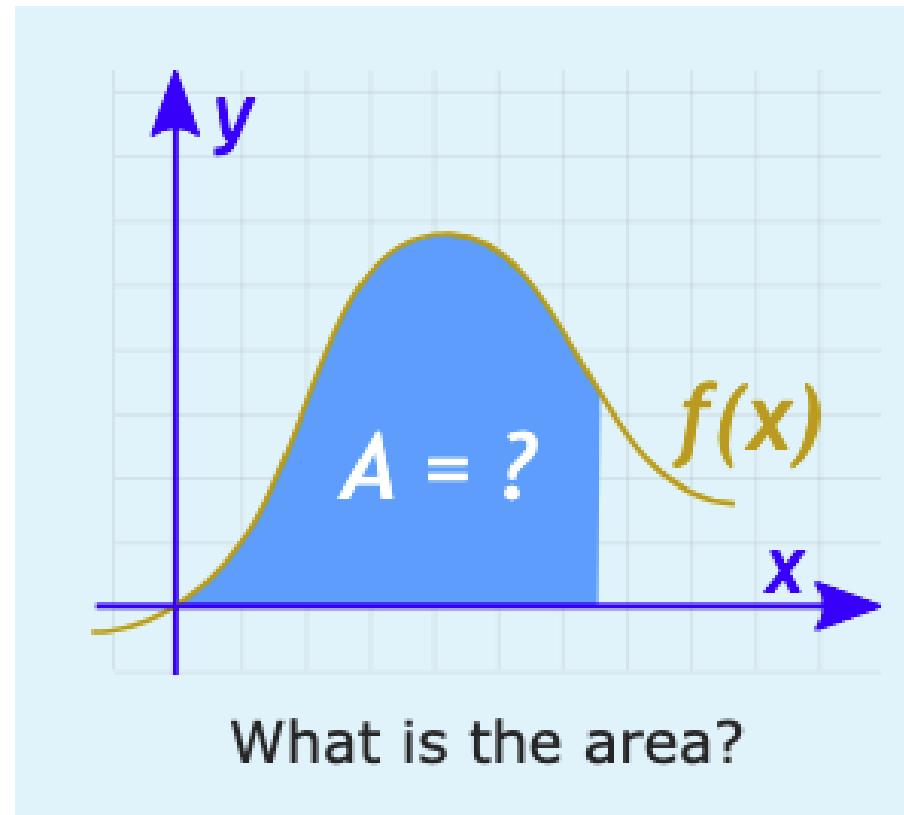
Derivative Rules

In practice it is easier to memorize derivative rules...

Common Functions	Function	Derivative	Rules	Function	Derivative
Constant	c	0	Multiplication by constant	cf	cf'
Line	x	1	<u>Power Rule</u>	x^n	nx^{n-1}
	ax	a	Sum Rule	$f + g$	$f' + g'$
Square	x^2	$2x$	Difference Rule	$f - g$	$f' - g'$
Square Root	\sqrt{x}	$(\frac{1}{2})x^{-\frac{1}{2}}$	<u>Product Rule</u>	fg	$f'g' + f'g$
Exponential	e^x	e^x	Quotient Rule	f/g	$\frac{f'g - g'f}{g^2}$
	a^x	$\ln(a) a^x$	Reciprocal Rule	$1/f$	$-f'/f^2$
Logarithms	$\ln(x)$	$1/x$			
	$\log_a(x)$	$1 / (x \ln(a))$	<u>Chain Rule (using ')</u>	$f(g(x))$	$f'(g(x))g'(x)$
Trigonometry (x is in <u>radians</u>)	$\sin(x)$	$\cos(x)$	Chain Rule (as " <u>Composition of Functions</u> ")	$f \circ g$	$(f' \circ g) \times g'$
	$\cos(x)$	$-\sin(x)$			
	$\tan(x)$	$\sec^2(x)$	Chain Rule (using $\frac{d}{dx}$)	$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$	
Inverse Trigonometry	$\sin^{-1}(x)$	$1/\sqrt{1-x^2}$			
	$\cos^{-1}(x)$	$-1/\sqrt{1-x^2}$			
	$\tan^{-1}(x)$	$1/(1+x^2)$			

Integral

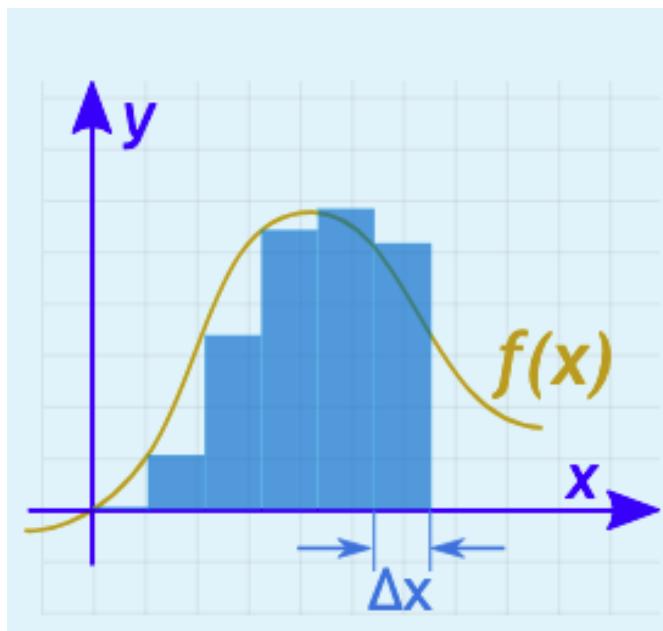
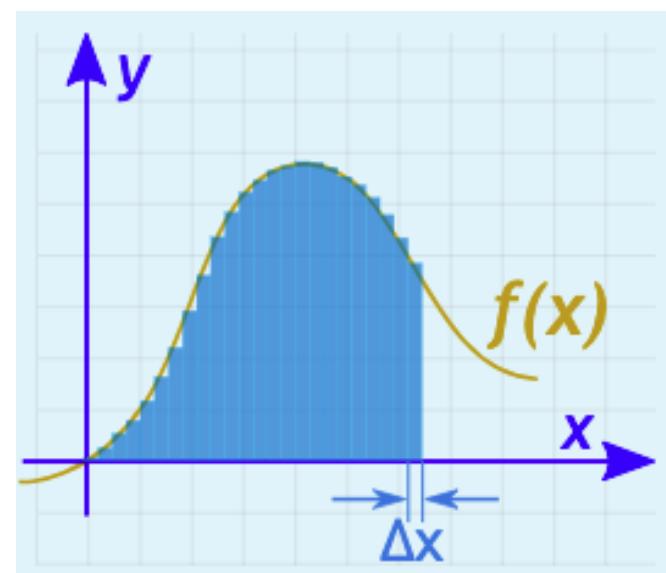
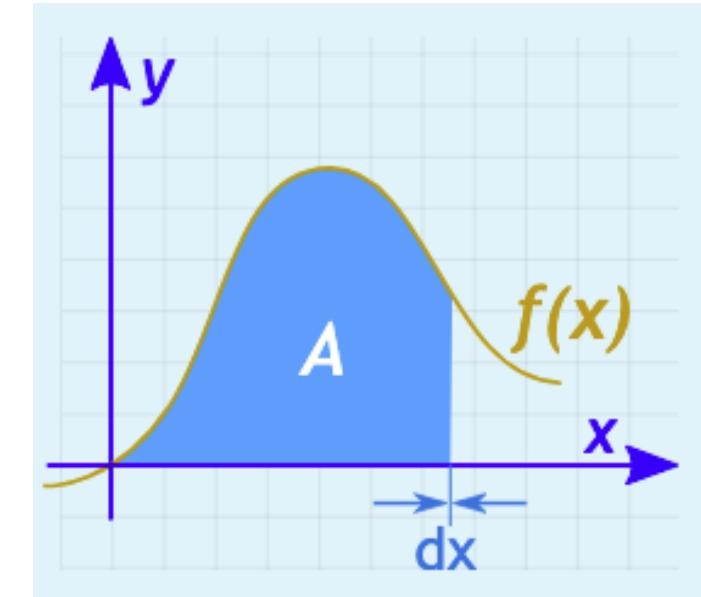
The integral computes the area under a function...



...it is also the reverse operation of a derivative.

Integration

We can view this as adding up smaller and smaller slices...



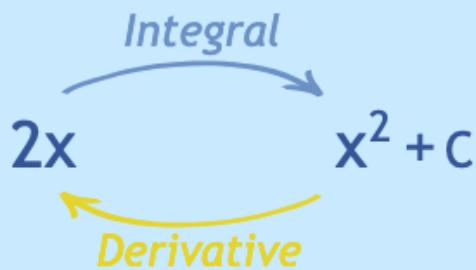
...where dx means slices are approaching zero width.

Integration

But there is a shortcut because the integral is the reverse of the derivative...

Example: $2x$

An integral of $2x$ is x^2 ...



... because the derivative of x^2 is $2x$

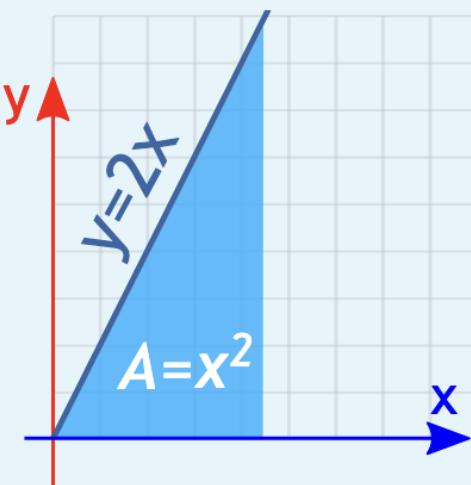
(More about " $+C$ " later.)

Integral Notation

$$\int 2x \, dx = x^2 + C$$

Annotations:

- Integral Symbol: Points to the \int symbol.
- Slices along x: Points to the dx term.
- Function we want to integrate: Points to the $2x$ term.



$$\text{Area of triangle} = \frac{1}{2}(\text{base})(\text{height}) = \frac{1}{2}(x)(2x) = x^2$$

$$\int 2x \, dx = x^2 + C$$

- “Constant of Integration”
- Captures all functions whose derivative is $2x$
- Derivative of a constant C is 0 so...
 - Derivative of x^2 is $2x$
 - Derivative of $x^2 + 4$ is $2x$
 - Derivative of $x^2 + 99$ is $2x$
 - Etc.
- Basically, just always add $+ C$...

Rules of Integration

Common Functions	Function	Integral
Constant	$\int a \, dx$	$ax + C$
Variable	$\int x \, dx$	$x^2/2 + C$
Square	$\int x^2 \, dx$	$x^3/3 + C$
Reciprocal	$\int (1/x) \, dx$	$\ln x + C$
Exponential	$\int e^x \, dx$	$e^x + C$
	$\int a^x \, dx$	$a^x/\ln(a) + C$
	$\int \ln(x) \, dx$	$x \ln(x) - x + C$
Trigonometry (x in radians)	$\int \cos(x) \, dx$	$\sin(x) + C$
	$\int \sin(x) \, dx$	$-\cos(x) + C$
	$\int \sec^2(x) \, dx$	$\tan(x) + C$
Rules	Function	Integral
Multiplication by constant	$\int cf(x) \, dx$	$c \int f(x) \, dx$
Power Rule ($n \neq -1$)	$\int x^n \, dx$	$\frac{x^{n+1}}{n+1} + C$
Sum Rule	$\int (f + g) \, dx$	$\int f \, dx + \int g \, dx$
Difference Rule	$\int (f - g) \, dx$	$\int f \, dx - \int g \, dx$
Integration by Parts	See Integration by Parts	
Substitution Rule	See Integration by Substitution	

Example: Power Rule

Example: What is $\int x^3 dx$?

The question is asking "what is the integral of x^3 ?"

We can use the Power Rule, where $n=3$:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int x^3 dx = \frac{x^4}{4} + C$$

Example: Power Rule

Example: What is $\int \sqrt{x} \, dx$?

\sqrt{x} is also $x^{0.5}$

We can use the Power Rule, where $n=0.5$:

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

$$\int x^{0.5} \, dx = \frac{x^{1.5}}{1.5} + C$$

Example: Multiplication by a Constant

Example: What is $\int 6x^2 dx$?

We can move the 6 outside the integral:

$$\int 6x^2 dx = 6 \int x^2 dx$$

And now use the Power Rule on x^2 :

$$= 6 \frac{x^3}{3} + C$$

Simplify:

$$= 2x^3 + C$$

Definite Integral

Same concept as a discrete summation...

$$\sum_{x=a}^b 2x$$

Discrete

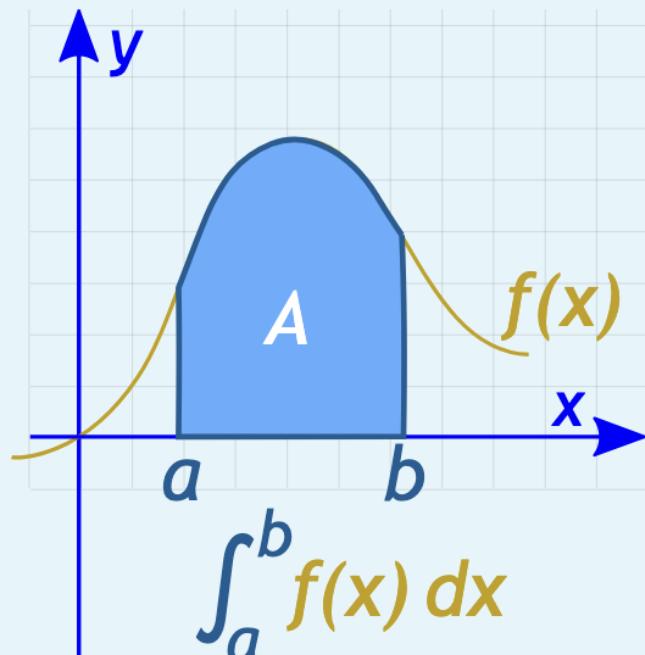
$$\int_a^b 2x \, dx$$

Continuous

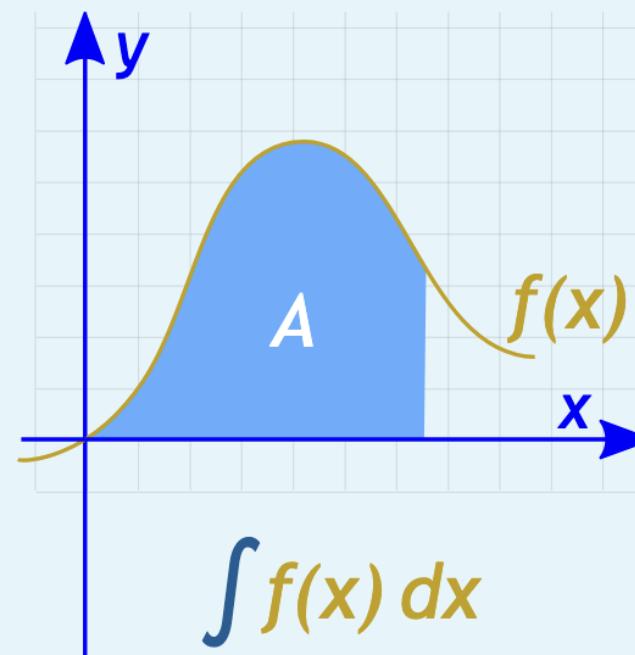
...integral symbol is a stylized “S” for “sum”.

Definite Integral

Definite Integral can be used to find the area under a curve between two points...



Definite Integral
(from **a** to **b**)



Indefinite Integral
(no specific values)

Definite Integral

First we compute the indefinite integral,

$$\int_a^b 2x \, dx = x^2 + C$$

Then we substitute and subtract the endpoints,

$$[x^2 + C]_a^b = b^2 - a^2$$

Notice that the constant of integration always cancels,

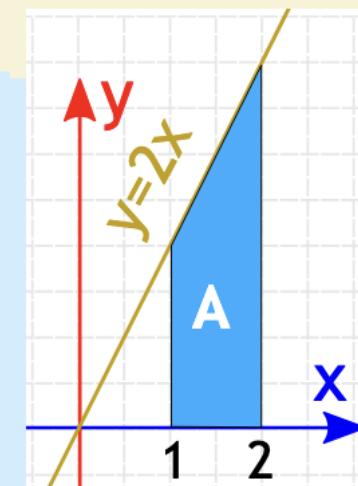
$$[x^2 + C]_a^b = (b^2 + C) - (a^2 + C) = b^2 - a^2$$

Example: Definite Integral

Example (continued)

How to show your answer:

$$\begin{aligned}\int_1^2 2x \, dx &= [x^2]_1^2 \\ &= 2^2 - 1^2 \\ &= 3\end{aligned}$$

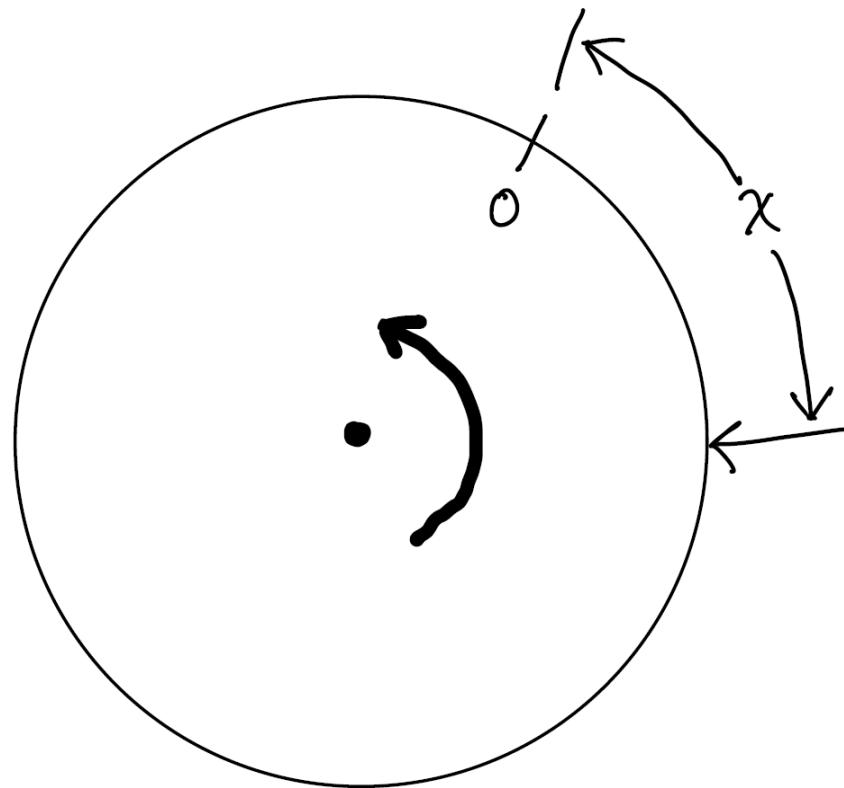


Outline

- Concepts of Calculus
- **Continuous Probability Distributions**
- Fundamental Rules of Probability

Continuous Probability

Experiment Spin continuous wheel and measure X displacement from 0



Question Assuming uniform probability, what is $P(X = x)$?

Continuous Probability

For continuous random variables, the probability of any outcome is zero:

$$P(X = x) = 0$$

Our preference is to define events as intervals, e.g. using the CDF:

$$P(X \leq x), \quad P(a < X \leq b), \quad P(X > c), \quad \text{etc.}$$

Note that when X is continuous,

$$P(a < X \leq b) = P(a < X < b) + P(X = b) = P(a < X < b)$$

thus, it does not matter if we include the endpoints.

Probability Density

Definition A function $p(X)$ is a **probability density function (PDF)** of a continuous random variable X if the following hold:

(a) It is nonnegative for all values in the support,

$$p(X = x) \geq 0$$

(b) The integral over all values in the support is 1,

$$\int p(X = x) dx = 1$$

(c) The probability of an interval is given by the integral of the PDF,

$$P(a < X < b) = \int_a^b p(X = x) dx$$

Continuous Probability

$$P(a \leq X < b) = \int_a^b p(X = x) dx$$

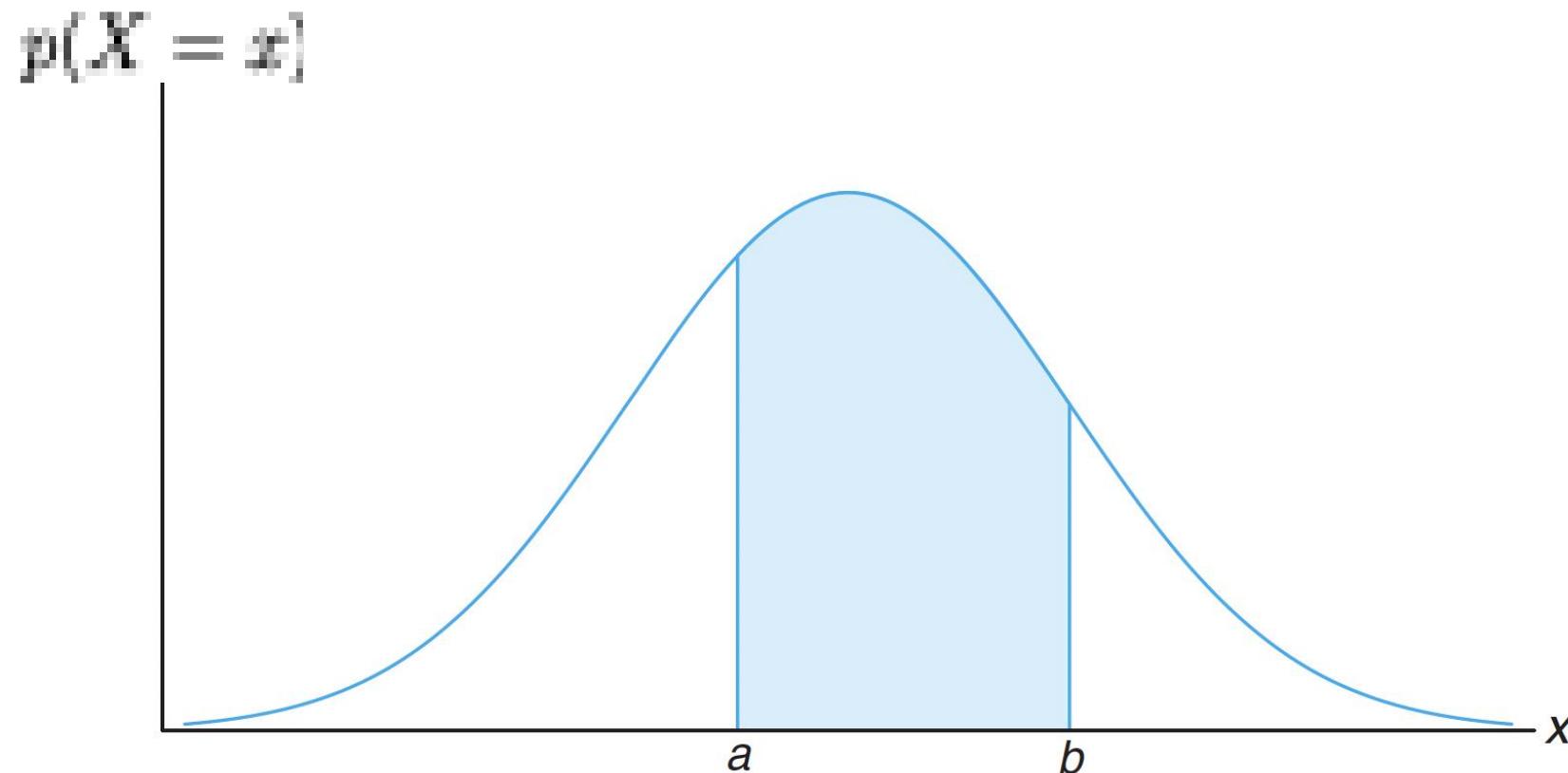


Figure 3.5: $P(a < X < b)$.

Continuous Probability Measures

- Can easily measure probability of closed intervals,

$$P(a \leq X < b) = P(X < b) - P(X < a)$$

- If X is *absolutely continuous* (i.e. differentiable) then,

Fundamental Theorem
of Calculus

$$p(x) = \frac{dP(x)}{dx} \quad \text{and} \quad P(t) = \int_{-\infty}^t p(x) dx$$

Where $p(x)$ is the *probability density function* (PDF)

A word on notation...

The book uses slightly different notation from my slides...

The function $f(x)$ indicates the PMF or PDF:

$$f(x) = P(X = x) \quad \text{for discrete } X, \text{ and} \quad f(x) = p(X = x) \quad \text{for continuous } X.$$

The function $F(x)$ denotes the CDF for discrete and continuous RVs X :

$$F(x) = P(X < x)$$

...I will largely avoid the $f(x)$ and $F(x)$ notation except for some examples.

Outline

- Concepts of Calculus
- Continuous Probability Distributions
- **Fundamental Rules of Probability**

Continuous Probability

Most fundamental rules hold, replacing PMF with PDF/CDF...

Two RVs X & Y are **independent** if and only if,

$$p(x, y) = p(x)p(y) \quad \text{or} \quad P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y)$$

Conditionally independent given Z iff,

Shorthand: $P(x) = P(X \leq x)$

$$p(x, y \mid z) = p(x \mid z)p(y \mid z) \quad \text{or} \quad P(x, y \mid z) = P(x \mid z)P(y \mid z)$$

Probability chain rule,

$$p(x, y) = p(x)p(y \mid x) \quad \text{and} \quad P(x, y) = P(x)P(y \mid x)$$

Continuous Probability

...and by replacing summation with integration...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{Y}} p(x, y) dy$$

Conditional density of a continuous random variable,

$$p(x | y) = \frac{p(x, y)}{p(y)}$$

Combining these we have the following:

$$p(x | y) = \frac{p(x, y)}{\int_{\mathcal{X}} p(x, y) dx}$$

Continuous Probability

Caution Some technical subtleties arise in continuous spaces...

For **discrete** RVs X & Y, the conditional

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

is **undefined** when $P(Y=y) = 0$... no problem.

For **continuous** RVs we have,

$$P(X \leq x \mid Y = y) = \frac{P(X \leq x, Y = y)}{P(Y = y)}$$

but numerator and denominator are 0/0.

...we will just work with the conditional PDF for now...

Fundamental Rules of Probability

Law of total probability

$$p(Y) = \int p(Y, X = x) dx$$

- $p(y)$ is a **marginal** distribution
- This is called **marginalization**

Proof

$$\int p(Y, X = x) dx = \int p(Y)p(X = x | Y) dx \quad (\text{chain rule})$$

$$= p(Y) \int p(X = x | Y) dx \quad (\text{distributive property})$$

$$= p(Y) \quad (\text{PDF Integrates to 1})$$

Fundamental Rules of Probability

Given two continuous RVs X and Y the **conditional density** is:

$$p(X | Y) = \frac{p(X, Y)}{p(Y)}$$

By the law of total probability, we also have the definition:

$$p(X | Y) = \frac{p(X, Y)}{\int p(X=a, Y) dx}$$

Independence of RVs

Definition Two random variables X and Y are independent if and only if,

$$p(X = x, Y = y) = p(X = x)p(Y = y)$$

- This must hold for all values x and y .
- If for any values x and y ,

$$p(X = x, Y = y) \neq p(X = x)p(Y = y)$$

then X and Y are **dependent**.

- Example: Rolling two dice, each die is independent of the other
- Independence is *symmetric*: if X is independent of Y then Y is independent of X
- Equivalent definition of independence: $p(X | Y) = p(X)$

Independence of RVs

Definition RVs X_1, X_2, \dots, X_N are mutually independent if and only if,

$$p(X_1 = x_1, \dots, X_N = x_N) = \prod_{i=1}^N p(X_i = x_i)$$

In words: If a set of random variables is independent, then their joint probability is a product of their marginals.

Independence of RVs

Definition Two random variables X and Y are conditionally independent given Z if and only if,

$$p(X = x, Y = y | Z = z) = p(X = x | Z = z)p(Y = y | Z = z)$$

for all values x , y , and z .

➤ N RVs conditionally independent, given Z , if and only if:

$$p(X_1 = x_1, \dots, X_N = x_N | Z = z) = \prod_{i=1}^N p(X_i = x_i | Z = z)$$

➤ Equivalent def'n of conditional independence: $p(X | Y, Z) = p(X | Z)$
➤ Conditional independence is symmetric

